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ABSTRACT

Empirical Research in Service Operations, Sustainability and Supply Chain Management

Kejia Hu

Data is a myth and a treasure. Empirical analysis is the key to unlock the myth and

discover the valuable information in the treasure. My research during PhD study centered

around empirical analysis and extracted insights to improve the operations in services,

the sustainability regulation of government and the demand prediction in supply chain

management.

In Chapter 1, it is studied how retrial behavior is related with service speed and service

quality. A key dilemmas faced by all service providers is how to trade off between high

quality of services and timely responses. In reality it’s too expensive to offer both. When

either features is lacking in the service systems, customers’ retrial occurs – a calling back

behavior for resolving the same request. According to the reason for retrial, we classify

retrial into the congestion retrial where customers abandoned in the previous call due to

a slow system and the fitness retrial where customers received unsatisfactory services in

the previous call due to poor quality. In this paper we want to understand retrial by con-

necting customers behavior with their preferences for service aspects: the speed in service
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access and the quality in service delivery. We use a random-coefficient dynamic structural

model on a call-by-call dataset from a hybrid service system, where three service groups

of different quality are sequentially brought in to serve customers. The unique feature

of such hybrid service system allows us to quantify different preferences for service speed

and service quality across different customer segments while confirming that in general

high service quality and speedy delivery reduce retrial. Interestingly, business customers

have a stronger preference for service speed compared to private customers while private

customers are more sensitive to the service quality. Realizing the different preferences

across customer segments, we suggest two economical viable strategies to reduce retrial

by tailoring service to meet customers’ distinct preferences. The first approach, without

expanding the service team, can improve business customers’ surplus by 37.9% and pri-

vate customers’ surplus by 18.2% by wisely allocating the current service groups along

the timeline; The second approach, by expanding the service team with more cheap labor

resources of call center agents, they can improve customers’ surplus up to a certain level.

However, they should be aware that the surplus will go down if there are too many call

center agents because call center agents provide timely responses but not the best qual-

ity. The greatest extent of surplus increase is 2.35% for private customers and 26.3% for

business customers.

In Chapter 2, it is studied how strictness of standards and intensity of competition

drive carmakers’ misconduct in emission. From 2000 to 2012, though the EU Commission

tightened the emission standards three times, the actual emission per vehicle didn’t reduce

as expected and the fraction of cars emitting more NOx than the emission standards

during on-road driving actually increased. In our research, we use theoretical models to
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suggest that when facing both fierce competition and tight standards, carmakers are more

likely to misconduct by failing to meet standards. Using empirical analysis on 13-year

records of car-by-car on-road emission, we confirm the findings in practice. We find that a

1% increase in market-level competition intensity increases the probability of misconduct

by 0.58%; a 1% tightening in standard limits increases the probability of misconduct by

1.72%; and the addition of one more vehicle model substitute increases misconduct by

0.48%. Our research suggests that regulators set the strictness of standards accounting

for competition intensity and monitoring effectiveness. Once the competition intensity

exceeds a threshold, regulators should ensure that tightening standards are accompanied

by improved monitoring to avoid an increase in misconduct and ensure social welfare

increase. Our counterfactual analysis finds that the EU decision to relax standards for

the next few years while working to improve monitoring effectiveness is justified. The EU

action is likely to decrease the probability of misconduct by between 9.56% to 11.04%.

In Chapter 3, it is developed a forecasting method to predict demand over the life cycle

ahead of products’ launch. We present an approach to fit product life cycle (PLC) curves

from historical customer order data and use them to forecast customer orders of ready-to-

launch new products that are similar to past products. We propose three families of curves

to fit the PLC: the BASS diffusion curves, polynomial curves and piecewise-linear curves.

Using a large data set (133 products) of customer orders for short lifecycle products, we

compare goodness-of-fit and complexity for these families of curves. Our key empirical

findings from PLC fitting are that simple, piecewise-linear curves are very effective at

fitting the PLC in our data set, and the products in our data rarely have a “mature” or

“sustain” phase often represented in traditional PLC curves. Using time-series clustering
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techniques, we cluster the fitted PLC curves into several representative curves and use

these curves to generate forecasts for the products in our data set. Our forecasts result

in absolute errors approximately 9% lower than the company forecasts.
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CHAPTER 1

Understanding Customers Retrial in Call Centers:

Preferences for Service Quality and Service Speed

(joint with Gad Allon and Achal Bassamboo)

1.1. Introduction

One of the key dilemmas faced by all service providers is how to trade off between

high quality of services and timely responses. Although customers always want a fast

and accurate response when contacting a call center, it is expensive for service providers

to offer both. When either features is lacking in the service systems, customers’ retrial

occurs – a calling back behavior for resolving the same request. Customers may retry after

abandoning their previous call due to long waiting in a slow service system. Customers

may also retry after receiving unsatisfactory services in the previous call due to poor

quality. In service industries, the metrics closely related with retrial is called First-Contact

Resolution (FCR). According to the International Customer Management Institute, FCR

is the percentage of initial calls that do not require any further contacts to address the

customers’ requests. In other words, higher FCR means less retrial rate. Service providers

actively seek solutions to increase FCR because 1% improvement in FCR can reduce 1%

operation cost, improve 1% customer satisfaction and 1% ∼ 5% employee satisfaction,

increases selling opportunities and retain customers for longer term.1 Though FCR is one

1http://sqmgroup.com/call-center-first-contact-resolution-benchmarking-study
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of the most important operation metrics in services, the industry average is merely 70%

(Babel (2014)) because it is not easy to cost-effectively provide both good quality and

service speed. To reduce retrial in an economic viable manner, service providers need first

to clarify customers’ preferences regarding good quality and timely services, and then to

balance the service offerings between these two aspects. Ultimately, this paper aims 1)

to capture the drivers behind customers’ retrial behavior, (2) to understand customers’

preferences between service speed and quality, and (3) to enlighten the research of service

priority and staffing choices related with the service speed and quality.

According to the reason for retrial, either due to long waiting or due to poor service

quality, we classify retrial into two types. We will refer to the first type as the congestion

retrial.

Congestion retrial occurs when customers call back for the same request after aban-

doning their previous call. A service system equipped with insufficient number of agents

leads to congestion, causing long waiting time for the customers. Eventually, after the

customers’ patience is exhausted, customers choose to abandon the call without getting

their request resolved, and have to call back later.

In our research, we use a call-by-call dataset from a medium-sized Israeli bank which

adopts a hybrid service model.2 This hybrid model incorporates three service groups

which differ in the quality of services they offer and their speed in reaching customers.

Illustrated in Figure 1.1, the hybrid service model includes three service groups: the target

agent group, the branch backup group and the general call center group. The target agent

group is composed of customers’ private bankers. These private bankers know most about

2We thank the Service Enterprise Engineering (SEE) lab at the Technion for generously providing us
with the call center records.
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the customers’ information and are expected to deliver the best quality of services. The

branch backup group is composed of personal bankers of other customers from the same

physical branch. The last service group is the large general call center group which is

composed of the regular call center agents. When a customer calls in, he is first placed

in the queue leading to the target agent group. If his call doesn’t get answered within

one minute, he will also take a spot in the queue to the branch backup group. After

another minute, if both the target agent and the branch backup team cannot answer the

phone, then the customer will take another spot in the queue to the call center group. At

this point of time, the customer takes one spot in each of the three queues and the first

available group will provide the service. By first allocating the customer into the queue of

target agents and later bringing in the help from other service groups, the purpose of the

hybrid model is to combine high-quality personal banking services with a quick response.

However, this brings up a new concern: a customer who could have been served by the

target agent are now served by a call center agent. If the call center agent is unable to

provide good quality, the customer will retry later. In fact, an industrial survey about

contact centers (Dimension Data, 2009) states that poor agent capabilities and lack of

access to customer information are the top two reasons for retrial.

Here we define the second type of retrial related with service quality. Fitness retrial

is customers’ behavior of calling back after receiving poor service quality in the previous

call. Compared with the congestion retrial, in which customers call back because they

did not speak with a service agent in the previous call, the fitness retrial occurs when

customers speak with service agents but are not happy with the service quality.
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Figure 1.1. Call Center Service Groups.

In this paper we want to understand congestion retrial and fitness retrial by connect-

ing customers’ behavior with their preferences for service aspects and further to provide

suggestions to improve services.

To begin with, we use a Probit regression to explore how the probability of retrial is

connected with with aspects of services delivered in the previous call. Our results suggest

that the decisions of retrial are significantly impacted by the outcome of the previous call

( whether the caller abandoned or was served), the service provider and the length of the

provided service.

Then we turn to a random-coefficient dynamic structural model to capture customers’

behavior responding to the service speed and quality. Fitting the structural model with

the call-by-call dataset, we found that in general customers value good service quality

and timely responses. The services offered by the target agents are perceived as the

best quality while the call center agents offers the most ordinary quality. Across two
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customer segments, we find that in terms of retrial, business customers are less sensitive

to the service groups but have a stronger preference for timely responses compared to the

private customers.

Lastly, we use counterfactual analysis, to suggest economic viable approaches to im-

prove services. We know that in order to reduce retrial, the ideal service system immedi-

ately serves every customer with their target agent upon arrival. However, this strategy

is very costly because such high-quality and timely services require a large number of

target agents who are expensive to train and hire. Hence we suggest two strategies that

tailoring services to meet customers’ distinct preferences. In our first approach, we sug-

gest improving customers’ surplus by efficiently allocating the service teams along the

timeline based on customers’ preferences. Instead of the generic one-minute time lag be-

tween adding new service groups in the original system, we suggest a 5-second time lag for

business customers and a 25-second time lag for private customers. The time lag plays a

role in trading-off between timely responses and good quality. A large time lag increases

the likelihood of accessing good quality but causes longer waiting while a short time lag

offers the reverse. Without expanding the service teams, we improve business customers’

surplus by 37.9% and private customers’ surplus by 18.2%. In our second approach, we

suggest to improve services by hiring more cheap resources, the call center agents. The

call center agents reduces’ customers waiting cost but also lowers the chances to get good

quality. After adding a certain number of call center agents, the surplus will start decreas-

ing when the marginal loss in service quality outweighs the marginal gain from shortening

online waiting. Hence the service provider need to understand customers’ preferences in

speed and quality before deciding the number of call center agents to hire. In the current
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service teams, business customers’ surplus will be increased by 26.3% with 5 more call

center agents and the private customers’ surplus will be increased by 2.35% with 3 more

call center agents.

Our paper offers several contributions. First, to our knowledge, our paper is one of

the first to understand how customers’ retrial behavior is impacted by service quality and

speed. In particular, utilizing the rich data from the hybrid service model, we are able

to disentangle the effects on retrial from two service aspects: timely responses and good

quality. Based on our classification of retrial, the fitness retrial and the congestion retrial,

we empirically structures the mechanism of retrials with customers’ preferences for speed

and quality of services. Secondly, this is the first empirical model we are aware of in the

service domain that comprehensively captures customers’ behavior when they are online

(waiting in line or talking with an agent) and offline (waiting outside of the service sys-

tem). Most empirical service models only study customers behavior when the customers

are observed online. However, in our model, we acknowledge that customers also make

decisions in the offline stage of whether to retry and return to the service system. Service

providers should realize their online service offering affects such offline decisions and the

customers offline decisions will also impact the online service operations. Thirdly, we

demonstrate the importance of accounting customers’ preferences when making operation

decisions in a multi-skill setting. Specifically, we show adding agents, an action usually

conceived beneficial to the customers, may in fact hurt customers’ overall utility beyond

a certain point. Given the fact that adding a general call center agent means trading off

good quality for a quick response, eventually customers will be hurt when their loss in

quality cannot be compensated by the quick service speed. Lastly, our study develops a
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methodology framework to analyze customers’ preferences in speed and quality and the

mechanism between customer behavior and offered services. This methodology framework

can be applied to a wide range of digital and virtual service industrial practices beyond

call center management.

The results of our analysis indicate that customers across different segments vary in

their preferences between service quality and service speed. To be specific, this research

highlights that business customers have a stronger preference for timely responses but

care less about the service quality compared with the private customers. Hence service

providers need to first understand how their customers’ retrial impacted by the quality and

speed in the service system, and then align the service features with customers’ interests.

We suggest several economic viable plans to improve the service system: (1) without

expanding the service team, we can efficiently allocate the current service groups along

the timeline for different customers segments; (2)we can increase the customers’ surplus

with cheaper resource by hiring call center agents, as long as the gain from shorter waiting

time outweighs the loss in quality.

In the rest of the paper, we discuss literature review in Section 1.2, data and retrial

in the call center in Section 1.3, the dynamic structural model, its estimation and results

in Section 1.4, 1.5 and 1.6 respectively and the counterfactual analysis in Section 1.7. In

the end, the conclusion is summarized in Section 1.8.

1.2. Literature Review

Studies in retrial date back into a long history: there are many theoretical models

that incorporate retrial behavior. Initially, studies assumed that retrial occurs mainly
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after abandonment due to unavailability of servers and customers’ impatience in waiting.

(Sze (1984), Kulkarni (1983), Falin (1995), Artalejo and Lopez-Herrero (2000), Aguir et al.

(2004), Aguir et al. (2008), Reed and Yechiali (2013), Mandelbaum et al. (1999),Mandel-

baum et al. (2002),Shin and Choo (2009)). This type of retrial is what we call the conges-

tion retrial. Gradually, researchers realized that beyond the unavailability of servers, the

quality of servers may also impact retrial. Aissani (1994) and Kulkarni and Choi (1990)

model retrial due to unreliable of the server such as breakdowns. De Véricourt and Zhou

(2005) considers retrial happens when customers’ requests are not completely resolved by

the service representatives. This type of retrial is what we call as fitness retrial. Ding

et al. (2015) also distinguish fitness retrial from the congestion retrial and call the first

one reconnect and the second one redial. For furthur retrial modeling work, we refer in-

terested readers to the well-summarized literature surveys (Yang and Templeton (1987),

Falin (1990), Falin and Templeton (1997), Artalejo (1999),Gans et al. (2003), Aksin et al.

(2007), Artalejo (2010)).

One group of theoretical work related to our study is to model congestion retrial as a

strategic behavior of customers. Customers will choose an optimal retrial rate considering

both the system condition and the others’ choices in the system (Elcan (1994)). For most

of the cases, the self-interested consumers’ optimal retrial rate is not equal to the social

optimal rate (Cui et al. (2014)). Some studies suggest regulating retrial by changing

the service system design, such as imposing tolls on retrials (Hassin and Haviv (1996))

or requesting advance payment (Armony et al. (2009)). While the listed research only

studies the congestion retrial and focuses on customers’ preference for quick responses, we
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study the fitness retrial and the congestion retrial when customers make decisions based

on service speed as well as service quality.

Another group of theoretical work related to our study focuses on the speed-quality

trade-off faced by the service providers. Anand et al. (2011) considers spending longer

time with customers increases the service quality yet slows the service delivery and leads

to long waiting time for customers. Zhan and Ward (2013) considers the trade-off between

agents’ speed in handling calls and capability at resolving customers’ inquiries. They then

develop a threshold routing rule to allocate customers’ calls to agents of various service

speed and quality. For our research, we use an empirical approach to investigate the

trade-off between service speed measured by the average waiting time in line and the

quality of service agents. Then we provide suggestions for improving the system based on

the quantified customers’ preferences for service speed and quality.

Despite the abundance of theoretical work, there is very few empirical studies about

retrial. Shen (2010) said “little is known about the actual retrial behavior of customers”.

The two empirical retrials studies we are aware of are Hoffman and Harris (1986), which

estimates the call volume considering the presence of congestion retrial and Ding et al.

(2013), which estimates the call volume considering the presence of both congestion retrial

and fitness retrial. Instead of estimating the volume of calls or percentage of retrial calls,

we want to understand what drives retrial behavior from the service aspects.

There are several empirical papers to understand customer behavior in the call center.

Aksin et al. (2013) studies the abandonment behavior of customers in the call center. Yu

et al. (2016) studies the impact of delay announcement on abandonment behavior. Both

of the papers use structural models to capture the customer behavior in the call center.
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Structural models origin from economics (Rust (1987)) and now are adopted in operations

management. Our model is innovative because it comprehensively captures customers’

behavior when they are online (waiting in line or talking with agent) and offline (waiting

outside of the service system). The previous literature mainly addresses customers’ online

behavior such as abandoning or waiting in the line. However, our model acknowledges

that customers also make decisions in the offline stage of whether to retry and return to

the service system. Furthurmore, we connect the retrial behavior with the speed-quality

trade-off to instruct service providers to improve services.

1.3. Data and Retrial in Call Center

In this section, we first describe the dataset used in our research, quantitaively define

retrial and then present a descriptive analysis of customer retrial behavior in the call

center. The dataset is composed of call-by-call records from a medium-sized Israeli bank.

The data provides us with information about the identity of customers and each

customer’s online session. Customers are uniquely identified with the customer id and are

classified into two segments, business customers and private customers. The customer’s

session starts from his initial contact with the call center regarding a particular issue.

Upon his arrival, he enters into the “online waiting” period where he waits for an

agent. In this period, we observe his waiting time and abandonment decisions. If the

customer chooses not to abandon and waits until an agent becomes available, he will be

served. For served customers, we observe the service time and the service group (note that

a customer can be served by the target agent group, the branch backup group, or the call

center group). Up to this point, we observe the customer’s entire online system flow as
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illustrated in Figure 1.2. The online system starts upon the customer’s arrival, continues

throughout his online waiting period, and ends either when he chooses to abandon the

call or when the service has been received. Upon the customer leaving the online system,

he enters into the “offline waiting” period. During this period, the customer considers

whether to retry the online system. We then observe his offline waiting time and the retrial

decisions. If a customer chooses to retry, he returns to the online system. However, if a

customer chooses not to retry and has no action for a long time in the offline system, we

consider for this current issue he will no longer contact the call center again and mark it as

the termination of his session. The offline system starts from the moment customers leave

the online system and ends when customers retry or terminate their session. The entire

customer session can iterates between the online system and the offline system several

times if retrial occurs.

An overview of the call center data is presented here. Altogether the dataset recorded

269,035 calls. 78.91% of the callers were private customers and the others were business

customers. In terms of the outcome of calls, 18.91% of private callers chose to abandon

and 30% of them were served by the call center group, 22% by the branch backup group

and 28.91% by the target agent group. 18% of business callers chose to abandon and 26%

of them were served by the call center group, 30% of them were served by the branch

backup and 26% were served by the target agent group. In the online system, for private

customers, the average online waiting time is 51 seconds with the interquartile range from

7 seconds to 75 seconds and the average service time is 129.1 seconds with the interquartile

range from 26 seconds to 167 seconds. For business customers, the average online waiting

time is 49 seconds with the interquartile range from 6 seconds to 67 seconds and the
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Figure 1.2. Call Center System.

average service time is 92.2 seconds with the interquartile range from 18 seconds to 124

seconds.

1.3.1. Quantitative Definition of Retrial

In this section, we quantitatively define retrial. In Section 1.1, we introduce retrial as

customers’ behavior of calling back for the same request. If we do not observe a customer

calling back to the system, then he has no retrial. Based on this criterion, 65.1% of calls

are not observed with follow-up calls. The remaining 34.9% of calls are considered to

be the candidates of retrial behavior. To qualify as retrial, the callbacks must be for the

same request as the one in the previous call. Though we do not observe direct information
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about the content of calls, we detect retrial based on the following justification and two

statistical tests. Customers contact the call center either due to new requests or retrial.

Suppose the new requests occur in a constant manner for each customer, then, without

retrial, a customer contacts the call center with a constant arrival rate. However, when

retrial occurs, the arrival rate will be higher because now calls are from both new requests

and retrial. The following two statistical tests are build on the above rationale to detect

retrial.

We first use the Kolmogorov-Smirnov test to detect the length of retrial window for

each customer. Suppose, for customer i, his regular arrival rate is λi. When retrial occurs,

the arrival rate is λri . We identify the retrial threshold (i.e., retrial window length) T ri

based on whether the arrival rate during the retrial window is significant higher than the

regular one. Specifically, we use Kolmogorov-Smirnov test to examine whether the CDF

(cumulative distribution function) of calling gaps in the retrial window is higher than the

CDF of gaps out of the window. The testing hypothesis is that H0 : λ(0,T ri ) = λ(T ri ,∞);Ha :

λ(0,T ri ) > λ(T ri ,∞) where λ(0,T ri ) is the arrival rate from the moment the customer ended the

previous call to T ri later.

We then use the change point detection test to detects the start of the retrial window.

As discussed above, retrial means abnormal high calling frequency. Hence we identify the

start of retrial with detected surges in calling frequency using a change point detection

method. Calls corresponding to surges in calling frequency are considered as retrial. If

there are more than one consecutive retrial calls, the second one will not be detected given

the calling frequency is already in the high-zone and there is no detectable surge. Hence,

the detected calls mark the beginning of retrial calls, and the retrial window determines
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whether the follow-up calls are retrial. If the follow-up calls happen within the retrial

window, they are also considered as retrial.

Recognizing customers have different calling frequency, our two methods, the change

point detection method and the Kolmogorov-Smirnov test, are designed to detect indi-

vidual behavior. The change point detection method is customized to individuals’ calling

behavior. It detects surges in calling frequency for a particular customer compared to

his own calling behavior. Then, the Kolmogorov-Smirnov test is carried out for each

individual to detect a customer’s own unique retrial window.

Now we formally define retrial.

DEFINITION 1 Retrial: For customer i, a call at time t is retrial if either the call

at time t is identified as a surge or the call following a previous surge-identifieded call

ended at time j where j > t− T ri .

DEFINITION 2 Retrial can be classified into two types given the outcome of the

previous call.

Congestion Retrial: For customer i, a call at time t is congestion retrial if the call is

identified as retrial and it’s previous call is abandoned.

Fitness Retrial: For customer i, a call at time t is fitness retrial if the call is identified

as retrial and it’s previous call is served.

Based on the quantitative definition of retrial, the retrial behavior observed in the

data is summarized in Figure 1.3. Among 269,035 calls observed in the record, 34.9% of

them had a follow-up call from the same customer. 23.1% of calls are identified as retrial.

Given the outcome of their last call, 4.7% of calls were congestion retrial and 18.4% were

fitness retrial.
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Calls Never Call Back General Call Back Congestion Retrial Fitness Retrial

18.4%

4.7%
11.8%

65.1%

100%

0.184
0.231

0.349

Figure 1.3. Summary of Retrial

1.3.2. Data Explorative Analysis on Retrial

In this subsection, we explore what factors relate to retrial. This exploration helps to

construct the structural model in Section 1.4. First, we investigate how retrial is affected

by whether customers received service or not in the previous call. If they received service,

we then study how service experiences lead customers to conduct retrial.

First we discover that the probability of retrial is greater when the customer is not

served in his previous call. In (1.1), a Probit regression describes the relationship by

linking the dummy variable of retrial with the dummy variable of outcome in the previous

call. Φ(·) is the CDF of the standard normal distribution. The exact form of regression is

(1.1)
Pr(Retrial = 1|Outcome) =

Φ(α + β × I(Outcome = No Service Received in the Previous Call)).

In Table 1.1, the estimated parameters are α, the base impact on retrial regardless the

service outcome, and β, the marginal impact if the previous call is abandoned. We find

that if a customer abandons his last call and receives no service, the z-score for retrial is
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Parameter Estimate Std. Error z value P-value
α -0.710 0.003 -274.42 < 2× 10−16

β 0.220 0.006 39.63 < 2× 10−16

Table 1.1. Estimation of Probit Regression in Equation (1.1)

increased by 0.22. In other words, the estimated probability of retrial is 0.31 for those

not served customers and 0.24 for those served customers. Hence, the first factor that

influences retrial is whether the customer receives a service or not in his previous call.

Secondly, we find that retrial is also impacted by the service characteristics: the

service group and the length of service time. We denote the service time as Stime and the

service group as Sgroup. Recall the service groups l can be the target agent group, the

branch backup group or the call center group. The Probit regression to characterize such

relationship is

(1.2) Pr(Retrial = 1|Sgroup, Stime) = Φ(βTime × Stime +
∑
l

βl × I{Sgroup = l}).

In Table 1.2, the estimation results suggest that service groups and service time are signif-

icantly related to the probability of retrial. Among service groups, the target agent group

reduces retrial the most effectively, given that the z-score is lower by 0.86. Considering

the target agents are the personal banker of the customers, it is reasonable to conclude

that they provide the best service quality. Regarding service time, one more minute of

service reduces the probability of retrial, given that the z-score is lower by 0.005. Hence,

two additional factors that influence retrial are service time and service groups.

In this section, the results of the Probit regressions suggest retrial is impacted by three

factors: whether a customer received service or not in his previous call, the service group
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Parameter Estimate Std. Error z value p-value
βCall Center -0.529 0.005 -116.19 < 2× 10−16

βBranch Backup -0.816 0.006 -140.40 < 2× 10−16

βTarget Agent -0.859 0.007 -130.38 < 2× 10−16

βT ime -0.005 0.001 -4.75 < 2× 10−6

Table 1.2. Estimation of Probit Regression in Equation (1.2)

that provided services and the service time. In Section 1.4, we explore this further using

a structural model that includes the three factors. Firstly, the service reward is positive

if a customer receives a service or zero otherwise. Secondly, the service reward depends

on the service group. Lastly, the service reward is larger when the service time is longer.

The essential reason for us to adopt the structural model is to use operations and

economic theory so that we can clarify how institutional and economic conditions affect

retrial and to simulate counterfactuals.

First, a structural model of retrial can estimate unobserved behavioral parameters that

could not otherwise be inferred from the original non-experimental data. For example,

we cannot infer the customers’ unit cost of waiting online and offline from the above

explorative analysis. We cannot measure the relative service reward offered by different

service groups. Those parameters, though essential to guide the call center service system

design, are not identifiable in the descriptive analysis. The structural model, on the other

hand, provides the institutional and economic conditions regarding the retrial behavior

and allows us to quantify the waiting cost and service rewards. The estimation results

are presented in Section 1.6.
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Secondly, the structural model provides us opportunities to simulate counterfactuals.

One goal of our paper is to offer strategies to the service provider to reduce retrial. There-

fore, we should examine the performance of the call center services under different system

designs. The design simulation, however, is not achievable through descriptive analysis.

With descriptive analysis, it can only examine the design which generates the observed

data. With the structural models, we can test how alternative service designs perform

in terms of the service speed, service quality, and customer surplus. The counterfactual

analysis is presented in Section 1.7.

1.4. The Structural Model

To understand how customers abandon and retry in the call center system, we present

a dynamic structural model. The dynamic structural model captures customers’ deci-

sions regarding abandonment and retrial as they try to maximize their total utility from

resolving an issue. The dynamic decision process starts from the first time a customer

contacts the call center system, i.e. arrives online, for that particular issue. While the

customer waiting in the online stage for a service, he decides whether to abandon or to

keep waiting online by trading off the online waiting cost against the potential service

reward. Note that the reward depends on which service group provides the service: the

target agent, the branch backup agent or the call center agent. A customer will move to

an offline stage in the system after he abandons the queue or finishes a service. In the

offline stage, the customer decides whether to retry by trading off potential gains from

further services or some cost for leaving the issue partially resolved. If a customer retries,

he will move back to an online stage. If a customer stays offline for a sufficiently long
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period without retrying, we consider the customer will not pursue the issue again. And

this marks the end of the customer’s dynamic decision process for resolving the issue for

which he initially contacts the call center.

We call this entire dynamic decision process described above as an episode. For each

episode, it starts with an online stage, then alternates between the online stage and the

offline stage, and ends when the caller waits a sufficient long period (length of retrial

window) in the offline stage without retrying.

In order to set up the dynamic model, we next discuss the decision process during the

online and offline stages. For each stage, we outline the decisions the callers can make

and the utility function associated with the callers’ decisions.

1.4.1. Structural Model for the Online Waiting Stage

For each caller, the online waiting stage covers the entire period from the moment he

starts to wait online till the moment when he chooses to abandon or when he finishes a

service with an agent. We assume a caller does not choose to abandon while talking to an

agent. Hence, the actual decision-making process is from the moment he starts to wait

online and ends either when he chooses to abandon or when he starts a conversation with

an agent. We divide the total length of the online decision making process into small

time periods of equal length. Similar to Yu et al. (2016) and Aksin et al. (2013), we use 5

seconds for the length of each time period. Recall each episode may have multiple online

stages. If retrial occurs in the dynamic decision process, we use index k to denote the
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kth online waiting stage. By denoting the total number of periods during the kth online

waiting stage as Nw
k , we index each period by t where t = 1, 2, .., Nw

k . 3

The value-to-go for caller i at time period t during his kth stage at the online waiting

stage is given by

(1.3) Ψikt(εikt(aikt), aikt) = ψikt(θ
w, aikt) + εikt(aikt).

where aikt is caller i’s decision about whether to abandon at time period t or wait until time

period t+ 1 during his kth online stage. The function ψikt(θ
w, aikt) is the nominal value-

to-go of caller i. It is important to note that ψikt(θ
w, aikt) includes not only the nominal

utility at time period t but also the utility beyond period t. The last term εikt(aikt) is

the idiosyncratic shock which is observed only by caller i but not the researchers. The

idiosyncratic shock captures callers’ lack of adherence to pure rational decision making or

callers’ private information. Note that all these factors may vary with callers’ decisions on

whether to abandon the system. Thus, we let the idiosyncratic shock be a function of caller

i’s action aikt. We assume the idiosyncratic shock with mean set to 0 follows a Gumbel

distribution as εikt(aikt) ∼ Gumbel(γθw, θw) where γ is the Euler-Mascheroni constant.

We assume that εikt(aikt) is independent across time periods, the online waiting stages,

callers’ decisions, and the nominal value-to-go. It is important to note that ψikt(θ
w, aikt)

is the expected utility of time period t and beyond, over the idiosyncratic shock. Hence

it is a function of only the idiosyncratic parameter θw rather than any realization of the

shocks.

3Recall an online waiting stage may have follow-up online waiting stages if the caller chooses to retry
during the offline stages, the index of time periods starts from 1 for each online waiting stage.
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At period t, caller i makes a decision whether to abandon or to wait until period t+ 1

to maximize his utility. In particular, the optimal action a∗ikt ∈ {wait online, abandon} is

given by

a∗ikt = arg max Ψikt(εikt(aikt), aikt).

If caller i decides to abandon, he will do so immediately at the beginning of time period

t and move to the offline waiting stage in the next period. In this case, the nominal value-

to-go at time period t is given by χik0, the expected total utility of caller i from the kth

offline stage. Since the episode starts from an online waiting stage and then alternates

between the online and offline stages, a caller will enter into the kth offline stage after

leaving the kth online stage and χik0 is his aggregated offline utility function measured at

the beginning of the kth offline stage. The functional form of χik0 is specified in details

in the following subsection when we introduce the structural model for the offline waiting

stage.

If caller i chooses to wait online at period t, he incurs one unit waiting cost cwi and stays

in the queue until the next time period. Since each caller may have different preferences

for online waiting, we incorporate the randomness of unit online waiting cost with a

random variable zwi being i.i.d N(0, 1). To ensure the online waiting cost is positive, we

write it as cwi = |µw + σwzwi |. As he waits at period t, he may get a service from group

l ∈ {call center, branch backup, target agent} with probability plt. The probability of

being served by group l at period t conditional on the fact that the caller is still in the

queue at time period t is defined as

(1.4) plt =
Fl(t+ 1)− Fl(t)

1− Fl(t)
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where Fl(t) is the cumulative distribution function (CDF) of the waiting time of callers

who receive a service from group l. By computing plt from the observed dataset, the

expected payoff from being served is
∑
l

(pltRilk) where Rilk is the service reward from the

group l. The service reward Rilk depends on the service group l, and the length of the

anticipated service time Tik for caller i’s issue in the kth online stage. The longer the

anticipated service time, the more complicated and important the issue is to the caller.

This correlation is also supported by the exploration analysis in Section 1.3.2. Hence

we consider the service reward is positively correlated with the service time. Denoting

the service payoff per unit of anticipated service time from group l as rl, we write the

anticipated service payoff as Rilk = rlTik+χik0. The χik0 captures the nominal value-to-go

for caller i after he finishes the current service and enters into the offline stage where he

has the option to retry. This term will be defined mathematically in the next subsection

about the offline structural model. On the other hand, there is a probability (1−
∑

l plt)

that the caller may not get served during this online waiting period. Then he will decide

again whether to abandon or continue to wait as he enters the next time period t+ 1. In

this case, the caller get (1−
∑
l

plt)Vikt where Vikt denotes the expected total future utility

of caller i beyond time period t conditional on the fact that he decides to wait until time

period t+ 1. We refer to it as the aggregated future online utility function. It is given by

Vikt = E[max
a

Ψikt+1(εikt+1(a), a)].
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To summarize what we’ve discussed above, the nominal value-to-go function associated

with customer i’s action at period t of the kth online waiting stage is

(1.5) ψikt(aikt) =


−cwi +

∑
l

(pltRilk) + (1−
∑
l

plt)Vikt : aikt = wait online

χik0 : aikt = abandon

.

1.4.2. Structural Model for the Offline Waiting Stage

Once a caller finishes a conversation with an agent or chooses to abandon in the kth

online waiting stage, he immediately enters into the kth offline waiting stage. In the

offline waiting stage, he can choose to retry or to keep waiting offline. By retrying, the

caller will return to the online stage. Hence, the offline waiting stage ends either when the

caller decides to retry or when the caller’s offline waiting time at the current offline stage

reaches the retrial threshold. The statistical process for selecting the retrial threshold is

explained in Section 1.3.1. Recall a caller’s episode starts from the first time he joins

the online waiting stage and then alternates between the online and offline stages, and

the episode ends whenever during one offline waiting stage the waiting time reaches the

retrial window length. It marks the end of his pursue to solve the issue he called for

in this episode. The total length of the offline waiting stage is divided into small time

periods of equal length. We use 1 hour for the length and index the offline time period by

τ . Recall each episode may have multiple offline stages. If retrial occurs in the dynamic

decision process, we use index h to denote the hth offline waiting stage. By denoting the

total time periods of the hth offline waiting stage as N o
h, the period index τ is equal to

1, 2, ..., N o
h where N o

h is determined by the retrial threshold and 1-hour interval. Note that
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one episode may contain multiple offline waiting stages if a caller decides to retry in the

offline stages. The period index τ starts from 1 for each offline waiting stage.

The value-to-go of caller i at time period τ during the hth offline stage is given by

(1.6) Φihτ (ηihτ (dihτ ), dihτ ) = φihτ (dihτ ) + ηihτ (dihτ ).

where dihτ is caller i’s decision about whether to retry at time period τ or wait until time

period τ + 1. The function φihτ (.) is the nominal value-to-go of caller i which includes

not only the nominal utility at time period τ but also the utility beyond period τ . The

last term ηihτ is the idiosyncratic shock which is observed only by caller i but not by the

researchers. For the same reasons stated in the structural model for the online waiting

stage, this offline idiosyncratic shock is a function of callers’ actions. Furthermore, we

assume the idiosyncratic shock with its mean set to 0 follows the Gumbel distribution,

Gumbel(γθo, θo) where γ is the Euler-Mascheroni constant. The shocks ηihτ are inde-

pendent across different time periods, different offline stages, different decisions and also

independent from the nominal value-to-go φihτ (.). The nominal value-to-go captures the

expected utility of time period τ . Hence it is a function of only the idiosyncartic parameter

θo rather than any realization of the shocks.

In the beginning of each period τ , caller i makes a decision whether to retry or to wait

until the next time period τ + 1 to maximize his utility. In particular, the optimal action

d∗ihτ is given by

d∗ihτ = arg max Φihτ (ηihτ (dihτ ), dihτ ).
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Recall the aggregated future offline utility χik0 caller i gets when he leaves the kth online

waiting stage, its detailed formula is E[maxd Φik1(ηik1(dik1), dik1)], in words, the value-to-

go at the beginning of the kth offline waiting stage.

Next we clearly specify the nominal value-to-go for caller i associated with his action

dihτ . If a caller chooses to retry, he will do so immediately at the beginning of time period

τ and will move to the (h+ 1)th online stage in the next period. Since the episode starts

from an online waiting stage and then alternates between the online and offline stages,

the caller will enter into the (h + 1)th online stage after leaving the hth offline stage.

Hence, the nominal value-to-go he receives at this period is E(Vi,h+1,0), the aggregated

future online utility. It measures the value-to-go at the beginning of the online stage, i.e.,

Vi,h+1,0 = E[max
a

Ψi,h+1,1(εi,h+1,1(a), a)].

If a caller chooses to wait offline, he faces the offline waiting cost of the current period

and then he decides again whether to retry or to continue waiting as he enters the next

time period. The offline waiting cost captures the disutility a caller i incurs as he leaves

the calling issue unsolved or partially solved as time passes. The waiting cost first comes

from the regular waiting cost coi that shows up in each period of the offline waiting stage.

Since each caller may have a different offline waiting cost, we incorporate randomness

in the unit offline waiting cost with a random variable zoi being i.i.d N(0, 1) across all

customers. To ensure the offline waiting cost is positive, we write it as coi = |µo + σozoi |.

Moreover, the waiting cost jumps periodically with a daily pattern. In bottom panel of

Figure 1.4, we found a clear daily jump in calling back probability. We consider there

is a time-dependent offline cost ν. One explanation of the time-dependent cost is that a
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Figure 1.4. Calling Back Behavior (dashed lines to indicate daily cycles)

caller may choose to contact the call center only at some specific time of the day due to

the convenience. For example, a private caller may prefer to contact the call center only

during his lunch break. Hence we are more likely to observe his retrial behavior during

lunch time for the next following days. Another explanation of the time-dependent cost

is that a caller may face a penalty for leaving the issue unsolved in a daily cycle. In order

to avoid such penalty, the caller is more likely to retrial just before the he incurs the daily

penalty. We set this periodically-occurred waiting cost by νI(τ ∈ {1 day, 2 day, . . . }). If

ν is equal to 0, that means the caller doesn’t have any time of the day preferences for

contacting the call center. If ν is very large, that means the caller i is restricted to a

limited window of time to contact the call center everyday.

To summarize what we’ve discussed above, the nominal utility function at period τ of

the offline waiting stage is

(1.7) Φihτ (dihτ ) =

 Vi,h+1,0 : dihτ = retry

−coi − νI(τ ∈ {1 day, 2 day, . . . }) + χihτ : dihτ = wait offline
.
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where χihτ denotes the expected total future utility of caller i beyond time period τ

conditional on the fact that he decides to wait until time period τ + 1. We refer to it as

the aggregated future offline utility function. It is given by.

χihτ = E[max
d

Φihτ+1(ηihτ+1(dihτ+1), dihτ+1)].

Terminal Condition marks the end of an episode. Recall an episode is a dynamic

decision process involving a caller who contacts the call center to solve an issue, and

the episode ends when the caller stops pursuing the issue. Specifically, the episode ends

when the caller does not contact the call center for a period of time exceeding the retrial

window. The terminal condition is to set the future utility beyond the retrial threshold

in a single offline stage as 0. Mathematically speaking, the terminal condition of the

dynamic program is

(1.8) χi,h,T ri = 0,∀i, ∀h

Note T ri is the length of retrial window for customer i as introduced in Section 1.3.1.

We next explain how to estimate the above structural model of customers’ behavior

in the service system.

1.5. Estimation

In this section, we discuss the estimation strategy for the dynamic structural model

constructed above. Specifically, we use the maximum likelihood estimation to obtain

the parameters in our dynamic structural model. The main idea is to first compute the
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likelihood of observing a sequence of decisions, (i.e. waiting online/ abandoning during

online stages and waiting offline/retrying during offline stages) for each caller, and then

to compute the overall likelihood of all callers for a given parameter set. We estimate the

model parameters by maximizing the overall likelihood function, which best explains the

observed behavior.

To construct the likelihood function, we first characterize the probabilities of callers’

decisions whether to wait or abandon during the online waiting stage and whether to

wait or retry in the offline waiting stage. We define Pw
ikt(aikt; c

w
i (Zw), θw, rl, ∀l) as the

probability that caller i chooses the action aikt by time period t during his kth online

waiting stage and P o
ihτ (dihτ ; c

o
i (Z

o), θo, ν) as the probability that caller i chooses the action

dihτ by time period τ during his hth offline waiting stage. Using the corresponding choice

probability at each time period, we obtain the probability of observing the sequence of

choices over time for each caller. The following proposition characterizes the probability

of the callers’ decisions.

PROPOSITION 1.1 Let the idiosyncratic shock εikt(aikt) be i.i.d. Gumbel(γθw, θw)

distributed, and ηihτ (dihτ ) be i.i.d. Gumbel(γθo, θo) distributed. With the nominal value-

to-go specified in Equation (1.5) for the online waiting stage and in Equation (1.7) for

the offline waiting stage, we have the closed forms for the online and offline aggregated

future utility function

(1.9)

Vikt = θwlog(1 + exp(
ψikt+1(aikt+1 = “wait online”)

θw
))

χihτ =

 θolog(1 + exp(φihτ+1(dihτ+1=“wait offline”)

θo
)) : τ < T ri

0 : τ ≥ T ri

.
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Note T ri is the length of retrial window for customer i.

The choice probabilities at each time period of each online and offline stage are

(1.10)

Pw
ikt(aikt; c

w
i (Zw), θw, rl, ∀l) =

exp(ψikt(aikt)/θ
w)

1 + exp(ψikt(aikt = “wait online”)/θw)
,

P o
ihτ (dihτ ; c

o
i (Z

o), θo, ν) =
exp(φihτ (dihτ )/θ

o)

1 + exp(φihτ (dihτ = “wait offline”)/θo)
.

The total likelihood is computed by tracking the sequence of decisions for all callers

over a given parameter set. For caller i, his episode may contain multiple online stages

and offline stages as described in Section 1.4,. We use Ki to denote his total number of

online waiting stages and Hi to denote his total number of offline waiting stages during

his episode. Moreover, each online waiting stage and each offline waiting stage are divided

into small time periods. For caller i, the total number of periods for the kth online waiting

stage is denoted as Nw
ki and the total number of periods for the hth offline waiting stage

is denoted as N o
hi. The total log likelihood of observing the data, denoted by L, is equal

to the sum of the log likelihood of observing the sequence of caller i’s actions aikt during

his kth online waiting stage for k = 1, ..., Ki and dihτ during his hth offline waiting stage

for h = 1, ..., Hi, over i = 1, 2, ..., N where N is the total number of callers. Thus, the

total log likelihood is given by

L =
N∑
i=1

lnE[

Ki∏
k=1

Nw
ki∏

t=0

Pw
ikt(aikt; c

w
i (Zw), θw, rl,∀l)

Hi∏
h=1

No
hi∏

τ=0

P o
ihτ (dihτ ; c

o
i (Z

o), θo, ν)]

where cwi (Zw) = |µw + σwzwi | and coi (Z
o) = |µo + σozoi | with zoi and zwi being i.i.d

N(0, 1) distributed. To estimate the parameters ω = (µo, σo, θo, µw, σw, θw, rl, ν) ∈ Ω =

{(µo, σo, θo, µw, σw, θw, rl, ν) : µo ∈ R, σo ∈ R+, θo ∈ R+, µw ∈ R, σw ∈ R+, θw ∈ R+, rl ∈
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R+, ν ∈ R+} where Ω is the feasible set of the parameters, is equivalent to solving the

optimization problem as follows:

(1.11)

max
ω∈Ω

L(ω) = max
ω∈Ω

N∑
i=1

Li(ω)

Li(ω) = ln

∫ ∫ Ki∏
k=1

Nw
ki∏

t=0

Pw
ikt(aikt; c

w
i (Zw), θw, rl,∀l)

Hi∏
h=1

No
hi∏

τ=0

P o
ihτ (dihτ ; c

o
i (Z

o), θo, ν)φ(Zw)φ(Zo)dZwdZo

where φ(.) is the probability density function of the standard normal distribution.

Identification strategy addresses how to identify the parameter set ω in determining

customers behavior based on our dataset. We argue that the identification arguments used

in Aksin et al. (2013) can be applied to our structural model. First, it is important to point

out that, combining the nominal utility, the aggregated future utility and the terminal

condition, as described in (1.5), (1.7), (1.10) and (1.8), one can show that the customers’

choice probability given by (1.10) can also be expressed by a well defined function of the

parameters

({−cwi +
∑
l

(pltrlTik))

θw

}
t=1,...,max(Nw

ki)
,
{
−coi−νI(τ∈{1 day, 2 day, . . . })

θo

}
τ=1,...,T ri

)
. Specifi-

cally, we have

(1.12)

Pw
ikt(aikt; c

w
i (Zw), θw, rl,∀l) =

ζ

({−cwi +
∑
l

(pltrlTi)

θw

}
∀t
,
{−coi − νI(τ ∈ {1 day, 2 day, . . . })

θo

}
∀τ

)
P o
ihτ (dihτ ; c

o
i (Z

o), θo, ν) =

ξ

({−cwi +
∑
l

(pltrlTi))

θw

}
∀t
,
{−coi − νI(τ ∈ {1 day, 2 day, . . . })

θo

}
∀τ

)
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Shape Parameter Target Agent Branch Backup Call Center
Private Customer 1.02 0.41 0.19

Business Customer 0.88 0.55 0.28

Table 1.3. Shape Parameter of the Fitted Gamma Distribution of the Wait-
ing Time for Different Customer segments and Service Groups

where ζ and ξ are the corresponding well defined functions for the online choices and the

offline choices.

For the online stage, as shown by Aksin et al. (2013), one can identify
cwi
θw

and rl
θw

with l ∈ {target agent, branch backup, call center} separately iff the service probability

plt varies across different time periods for each l. One can see that the service proba-

bility plt, given in (1.4), is a discrete approximation of the hazard rate of the waiting

time associated with group l. Thus, to verify that our data shows significant inter-

temporal variation in service proabability, we turn to the distribution of the waiting

time associated with different service groups. Specifically, Table 1.3 reports the shape

parameter of the fitted Gamma distribution of the waiting time for different customer

segments and service groups. We observe that none of the shape parameters of the

Gamma distribution equals to 1, which implies that the hazard rate of the waiting time

for each service group and each customer segment varies over time. Thus, following

the arguments in Aksin et al. (2013), we claim that one can identify
cwi
θw

and rl
θw

with

l ∈ {target agent, branch backup, call center} seperately.

For the offline stage, one can identify
coi
θo

and ν
θo

iff the offline waiting time exceeds

more than one day for some callers. When the offline waiting time is beyond 1 day, the

waiting cost is coi + ν. When the offline waiting time is less than 1 day, the waiting cost

is coi . In Figure 1.4, the empirical density plot of the offline waiting time verifies that
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some callers’ offline waiting time exceeds 1 day and some callers’ offline waiting time is

less than one day. Hence we can identify
coi
θo

and ν
θo

separately following the arguments in

Aksin et al. (2013).

1.6. Results

In previous sections, we explained the structural model and the estimation strategy.

In this section, the estimation results are presented. We first report the results for the

structural model and then use cross-validation to show that our structural model has the

ability to predict retrial behavior.

1.6.1. Estimation Results

In the structural model, the customers make decisions regarding abandonment and retrial

based on their evaluation of online waiting cost, offline waiting cost and the expected

service rewards. In this subsection, we first discuss the estimation results for the online

stage: the online waiting cost cwi , the service reward associated with the three service

groups {rl : l ∈ {call center, branch backup, target agent}} and the dispersion of the

online idiosyncratic shock θw. Then we will do the same for the offline stage estimators:

coi , ν, and θo.

The estimation results for the online stage across the two customer segments are

summarized in Table 1.4. In the online stage, customers decide whether to abandon

or keep waiting for the service based on their unit online waiting cost and the expected

service reward at each time period t. By normalizing the reward rate of a call center agent
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Customer E(cwi ) = µw SD(cwi ) = σw r{branch backup} r{target agents} θw

Private 0.07 (0.11) 0.16 (0.11) 1.12 (1.19) 24.49 (4.00) 29.96 (1.74)
Business 0.28 (0.79) 0.13 (0.07) 2.45 (2.41) 23.11 (6.48) 17.87 (3.36)

Table 1.4. Estimates (and Std) of Online-Stage Parameters

Customer E(coi ) = µo SD(coi ) = σo θo

Private 0.60 (0.11) 0.61 (0.12) 0.79 (0.10)
Business 0.45 (0.14) 0.45 (0.16) 0.66 (0.15)

Table 1.5. Estimates (and Std) of Offline-Stage Parameters

r{call center} to be 14, the other estimates are then ratios compared to this base metric. Note

that the random online cost cwi = |µw + σwzi| is characterized by the location parameter

µw and the dispersion parameter σw.

The estimates suggest that:

(1) A quick access to services matters, especially to the business customers. From

the cost-reward ratio estimates, we see that the online waiting costs for both

customer segments are distinct above 0 and the business customers face higher

costs from online waiting. A private customer is willing to wait almost 3 times

longer than a business customer for equivalent service from a call center agent.

(A business customer is willing to wait 3.57(= 1/0.28) minutes for 1-minute talk

with a call center agent while a private customer is willing to wait 14.29(= 1/0.07)

minutes.)

(2) The service quality from target agents is the best and the private customers are

more sensitive to the service providers compared with the business customers.

From the service rewards ratio estimates, we see that for the private customers,

4Because we can only identify the ratio
cwi
θw and rl

θw with l ∈ {target agent, branch backup, call center},
we need to normalize one parameter to obtain a unique set of estimates.
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the service reward from the target agent is 24.49(= 24.49/1) times that of the

call center and 21.87(= 24.49/1.12) times that of the branch backup. However,

for business customers, the reward rates across service groups do not vary signif-

icantly: the service reward from the target agent is 23.11(= 23.11/1) times that

of the call center and 9.43(= 23.11/2.45) times that of the branch backup.

(3) The private customers exhibit more diversified behavior during online waiting

stage than the business customers. We see that both the variance of online

waiting cost and the dispersion of the online idiosyncratic shock are larger for

private customers.

Our key finding for the online stage is that customers value both service quality and

quick access to services, but their preferences differ across customer segments. Ultimately,

business customers, when compared to private customers, place more value on speed and

care less about quality.

The estimation results for the offline stage across two customer segments are summa-

rized in Table 1.5. At this stage, customers decide whether they should retry or stay offline

by evaluating their offline waiting cost and the potential gains if retry. The offline waiting

cost is composed of a regular unit offline waiting cost co and a daily-occurred waiting cost

ν. By normalizing the daily-occurred waiting cost ν to be 15, the other estimates are then

ratios compared to this base metric. Note that the random offline cost coi = |µo + σozi| is

characterized by the location parameter µo and the dispersion parameter σo.

The estimates suggest that:

5Because we can only identify the ratio
coi
θo and ν

θo , we need to normalize one parameter to obtain a unique
set of estimates.
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(1) Business customers have lower regular offline waiting costs. For business cus-

tomers, they incur less loss if not consulting the call center again to solve their

issue. This might be explained by that the business customers have other pro-

fessional alternatives to solve the issues instead of contacting the call center.

However, for private customers, there are much fewer side options.

(2) The time-dependent cost ν is more prominent for business customers compared to

the private customers. The unit offline waiting cost at the daily cycle for business

customers is 3.22(= (0.45 + 1)/0.45) times more than the regular offline waiting

cost while, for private customers, the incremental is just 2.67(= (0.60 + 1)/0.60)

times. This is consistent with our knowledge that business customers have a

more regular working routines to follow which impacts the time they contact the

call center.

(3) The private customers exhibit more variation during offline stages than the busi-

ness customers. We see that both the variance of regular offline waiting cost and

the dispersion of the offline idiosyncratic shock are larger for private customers.

Utilizing the obtained estimates in the structural model, we can estimate the proba-

bility of abandonment and retrial.

The estimated probabilities of abandonment for the business customers and private

customers are plotted with the corresponding 95% confidence interval in Figure 1.5. Com-

pared with the observed probabilities of abandonment, our model accurately captures this

behavior in the call center.

In Figure 1.6, the estimated probabilities of retrial segmented by the retrial types are

illustrated. Recall we define two types of retrial in Section 1.3: the congestion retrial
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Figure 1.5. 10-fold Cross-Validation: Estimated Prob of Abandonment
(line) v.s. Observed Prob of Retrial (dots)

which customers retry after abandoning the previous call; and the fitness retrial which

customers retry after an unsatisfactory service in the previous call. The probability of
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retrial for each type is calculated by:

(1.13)

P (congestion retrial at offline period τ)

=
∑
t

P (abandonment in previous call at online period t, retrial at offline period τ)

P (fitness retrial after a service from group l at offline period τ)

=
∑
t

P (receive a service from group l in previous call at online period t,

retrial at offline period τ)

where l ∈ {call center, branch backup, target agent}

In Figure 1.6, we see that in general retrial is more likely to happen in the early

periods of the offline stage. Moreover, the daily-occurred offline cost pushes people to

retry before the daily cycle ends. Compared across the retrial types, congestion retrial

tends to happen early in the offline stage while the fitness retrial happens across the entire

stage. This aligns with our conjecture that customers who didn’t receive a service in the

previous call tend to call back sooner to obtain services.

1.6.2. Cross-Validation

In this subsection, we use cross validation to assess our model’s performance in predicting

abandonment and retrial behavior. To use the ten-fold cross-validation, we first randomly

partition the original sample into ten equal-sized subsamples. Of the ten subsamples, a

single subsample is retained as the validation data for testing the structural model, and

the remaining subsamples are used as training data to estimate the parameters of retrial
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Figure 1.6. 10-fold Cross-Validation Estimated Prob of Retrial

behavior. The cross-validation process is then repeated ten times, with each of the ten

subsamples used exactly once as the validation data. For each validation process, we

calculate the MSE (mean-squared errors) based on the predicted probabilities of aban-

donment and retrial along with the observed ones in the testing subsample. The average

of the ten MSEs calculated from the ten-fold cross-validation measures the predictability

of our structural model. The resulted average MSE from the ten-fold cross validation is

merely 3.26 × 10−4 for the business customers dataset and 1.01 × 10−4 for private cus-

tomers dataset. This suggests our model predicts fairly well for the customers behaviors

from both segments.
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1.7. Counterfactual Analysis

In this section, we conduct a counterfactual analysis to demonstrate how our methodol-

ogy can help call centers design better service systems. In previous sections, the structural

model and estimation results convey the idea that both service speed and service quality

are desired for customers. Moreover, for different customer segments, their preferences

in terms of speed and quality are different. In order to improve the services, we want to

test two strategies, one without expansion in the service teams and the other one expands

the service teams with the cheap labor resources, the call center agents. The first strat-

egy examines the length of preferred time lag for each customer segment instead of the

generic one-minute time lag for all customers in the original system. Secondly, we examine

whether the service provider can improve services by adding more call center agents. We

use customer surplus, the expectation of service reward minus the total waiting cost from

online and offline stages, to evaluate whether a change should be implemented into the

current system.

Before diving into the counterfactual analysis, let us briefly describe the essence of

our call center model: the equilibrium between the perceived service probabilities and

the experienced service probabilities. Given the customers’ historical interaction with the

call center, they form beliefs about the service probabilities from the three service groups.

Based on these beliefs, customers make abandonment and retrial decisions, which in

turn impact the service probabilities experienced by other customers (since the service

probabilities are jointly determined by the staffing size of service groups and the number

of customers online). For a given service system, we are interested in characterizing

the equilibrium where the customers’ beliefs about the service probabilities (namely the
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perceived service probabilities) equal to the actual ones experienced by the customers

(namely the experienced service probabilities).

To compute this equilibrium, we use the following iterative procedure: for any service

system, we start with an initial guess of customers’ perceived service probabilities from the

three service groups. We then simulate the service system and the decisions of customers

under such anticipation. Based on the simulation results, we compute the actual service

probabilities experienced by the customers. If the experienced service probabilities are

different from the perceived ones, we will use the experienced service probabilities as the

new anticipation of customers and rerun the simulation. We stop once this simulation

converges in the sense that the difference between the experienced service probabilities

and the perceived ones is less than 1% for each period. Once we reach the equilibrium

state, we measure the merits of the service system by using the average of customers’

surplus. For one customer, his surplus is equal to the total service rewards minus the

total waiting costs. 6

Using the iterative procedure described above, we simulate the current service system

and determine the staffing size that leads to the closest service probabilities as the observed

ones. The final workforce we determined are 2 target agents, 1 branch backup agent and

4 call center agents.

First we examine how the time lag between adding new service groups should be altered

to align with customers’ preferences. The current system’s generic one-minute time lag

for all customers sets the benchmark. We will determine the preferred time lag based

on the improvement in customer surplus. Recall the time lag determines the delay when

6Remark: Given the estimates of reward and waiting cost is obtained when normalizing the reward from
call center agents to be 1, the consumer surplus is also measured based on this normalized value.
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Figure 1.7. Optimal Lag between Adding Service Groups

sequentially introducing the three service groups with diminishing service quality. If the

gap is very large, customers have higher chances to get served by high-quality agents but

endure longer waiting time. Conversely, when the gap is close to zero, customers face the

least likelihood to get good quality but also experience the shortest waiting time. Hence,

there should exist a sweet spot of such gap so that customers’ preferences in quality and

speed are aligned with the service offering. We anticipate different customers segments

should prefer different time lags considering their distinct preferences in timely services

and good quality. In our counterfactual analysis, we test the time lags from 0 seconds

to 1 minute with a five-second increment. Shown in Figure 1.7, we find that the system

should use a 5-second time lag for business customers and a 25-second time lag for private

customers. Updated the hybrid service model with the preferred time lags, we find that

the business customers obtain 37.9% more surplus and private customers obtain 18.2%

more surplus.
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From this counterfactual analysis, we highlight the different preferences between speed

and quality for each segment and also quantify the preferred time lag for each customers

segment. In general, the one-minute time lag is too long for both segments. The current

system needs to shorten the time lag in service delivery to prevent customers from waiting

too long in the online stage. Moreover, we see the business customers prefer a much shorter

time lag compared with private customers. The business customers prefer almost no

delay in access to the general call center agents which greatly shortens their waiting time

online. The crucial improvement of the business customer surplus is from the shortened

online waiting time. Private customers, however, would prefer certain amount of delay to

receive better quality of services. With the new shorter time lag, they are able to reduce

their waiting time online without loosing too much in good quality. This result once

again highlights our crucial message that business customers have a stronger preference

for timely services but care less about the service quality compared with the private

customers.

Secondly we examine whether an additional call center agent is always beneficial to the

customers. The reason to have both target agents and call center agents is because call

center agents are cheaper to hire but provide ordinary-quality services while target agents

are expensive to hire but deliver good quality. In order to improve the service system

cost-effectively, we want to see whether we can improve customer surplus by hiring more

call center agents. In the baseline system, we have two target agents, one branch backup

agent and four call center agents. In Figure 1.8, we examine how customer surplus changes

when expanding the general call center service group from 4 agents to 30 agents. In the

original system, private customers’ surplus is 139.7 and business customers’ surplus is
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87.8. Initially, we see the surplus for both segments increases. The peak of the surplus is

143.7 (a 2.35% increase) for private customers and 110.9 (a 26.3% increase) for business

customers. The increase in surplus is mainly due to the shortened waiting time and less

congestion retrial resulting from the abandoned calls. The percentage of increase is more

significant for business customers because they care more about online waiting compared

to the private customers. However, the surplus starts to decrease after adding a certain

amount of call center agents. For business customers, the surplus starts to reduce after

adding the 5th call center agents. For private customers, the surplus starts to reduce

after adding the 3rd call center agents. At the turning points in surplus, customers suffer

too much loss from losing good-quality and such loss outweighs their gain in shortened

online waiting time. The results suggest that adding more general call center agents is

not always beneficial. Since business customers care more about online waiting and are

less sensitive to service quality, they prefer to add more call center agents compared to

the private customers.

In this counterfactual, we learn that for service providers, whether to add one more

call center agent depends on the service regime. If the marginal loss in service quality

outweighs the marginal benefit in shortening online waiting, the service provider should

not add a call center agent. The maximum increase in customer surplus and also the

maximum number of call center agents that benefits customers’ surplus are both related

with customers’ preferences. This once again highlights that service providers need to

first understand customers’ preferences in service speed and quality, and then align the

service offering with customers’ preferences to provide the highest customers surplus.
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Figure 1.8. Customers are not always happier with more general call center
agents.

In this section, we conduct two types of counterfactual analysis to examine how we can

improve the current service system. The first analysis suggest customers surplus will be

improved significantly when the time lag between adding new service groups is optimized

for each customer segment. Business customers’ surplus is increased by 37.9% with a

5-seconds time lag and private customers’ surplus is increased by 18.2% with a 25-seconds

time lag. By choosing different time lags, it offers customers a service system balancing

between good quality and timely services to align with their preferences. The second

analysis suggests the service providers can hire the cheap labor resource, the general call

center agent, to improve customers surplus when the marginal gain from shortening online

waiting outweighs the marginal loss in service quality. For service providers, these two

analysis offer two strategies to improve services: 1. without expanding the service team,

they can improve customers’ surplus by wisely allocating the current service groups along
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the timeline; 2. By expanding the service team with more call center agents, they can

improve customers’ surplus up to a certain level. However, they should be aware that the

surplus will go down when there are too many call center agents on duties. The number

of call center agents to add is related with customers’ preferences.

1.8. Conclusion

This empirical study focuses on customers’ retrial behavior and studies how service

providers can improve services via a well designed hybrid system balancing between service

speed and service quality. The two important features in services are service quality,

i.e. how effectively the services resolve customers’ requests, and service speed, i.e. how

long customers need to wait before reaching services. The empirical results suggest that

customers across segments weights differently on service speed and service quality. It

proposes an important notion for service management that: service providers need to

first understand customers’ preferences in service speed and quality, and then to align

their service offering with customers’ preferences.

We classify retrial behavior into two types: the congestion retrial resulted from aban-

donment after long waiting and the fitness retrial resulted from unresolved requests after

low-quality services. The ideal service system offers both the best quality and the quickest

delivery. However, this is not the most cost-effective way to improve customers welfare.

In order to design an economic viable service system, the first step is to understand

customers’ preferences in speed and quality.

We use a call-by-call dataset from a hybrid call center that enables us to disentangle

customers’ preferences in speed and quality. In this call center, there are three groups of
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service providers that join the customers’ service pool sequentially: the target agent group

first, then the branch backup group and lastly the call center group. In this paper, we

study congestion retrial and fitness retrial by connecting customers’ behavior with their

preferences for service aspects and further to provide suggestions to improve services.

We first use Probit regressions to connect the probability of retrial with the outcomes

of the previous call. The results suggest retrial is impacted by three factors: whether

a customer received services or not in his previous call, the service group that provided

services and the service time.

We then use a random-coefficient dynamic structural model to study the fundamental

mechanism between retrial and service features suggested by the Probit regressions. We

model customers’ behavior in the two stages of the service system: the online stage

where customers wait for services and decide whether to abandon or not; and the offline

stage where customers decides whether to retry and go back to the online stage or not.

The online waiting cost suggests customers prefer speedy delivery and services from taget

agents as they provide the best quality. Moreover, our estimation of customers’ preferences

suggests that business customers value more speedy delivery and are less sensitive to

service quality compared to private customers.

Lastly, we suggest two approaches to improve services by tailoring the services to meet

customers’ distinct preferences. In our first approach, we suggest improving customers’

surplus by efficiently allocating the service teams along the timeline based on customers’

preferences. Instead of the generic one-minute time lag between adding new service groups

in the original system, we suggest a 5-second time lag for business customers and a 25-

second time lag for private customers. The time lag plays a role in trading-off between
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timely responses and good quality. Without expanding the service teams, we improve

business customers’ surplus by 37.9% and private customers’ surplus by 18.2%. In our

second approach, we suggest to improve services by hiring more cheap resources, the call

center agents. The service provider should be aware that the call center agents reduces’

customers waiting cost but also lowers the chances to get good quality. After adding a

certain number of call center agents, the surplus will start decreasing when the marginal

loss in service quality outweighs the marginal gain from shortening online waiting. In the

current service teams, business customers’ surplus will be increased by 26.3% with 5 more

call center agents and the private customers’ surplus will be increased by 2.35% with 3

more call center agents.

This paper contributes to the existing service management literature in the following

manners. First, our study promotes an understanding of how retrial behavior is impacted

by the service offering, in particular, speed and quality. We categorize retrial into two

types: the congestion retrial resulted from untimely services and the fitness retrial resulted

from poor quality. Secondly, our empirical model is innovative in capturing customers

behavior in both the online stage and the offline stage. We acknowledge that customers

also make retrial decisions in the offline stage that are heavily impacted by the service

aspects. Thirdly, we demonstrate the importance of accounting customers’ preferences

when making operation decisions in a multi-skill setting. Our counterfactual analysis

suggests two economic viable options to improve a hybrid service system. Lastly, our study

develops a methodology framework to analyze customers’ preferences in speed and quality

and the mechanism between customer behavior and offered services. This methodology
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framework can be applied to a wide range of digital and virtual service industrial practices

beyond call center management.

Future extensions of our research are worth exploring. In our structural model, we

consider service time is exogenous, which is not determined by the customers. One ex-

tension could model customers’ decisions in the online service stage, particularly whether

customers choose to hang up or keep talking with an agent. By modeling customers’ deci-

sions in the service stage, the service time is endogenous and determined by the customers’

experience of the on-going service.
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CHAPTER 2

Macro-environmental Forces that Drive Carmakers to

Misconduct:

Intense Competition and Stringent Standards

(joint with Sunil Chopra, Yuche Chen)

2.1. Introduction

In 2008, Volkswagen’s announced its new “clean” diesel cars and claimed to offer su-

perior fuel efficiency while complying with the strictest vehicle emission standards at that

time. Soon Volkswagen swept the US diesel car market with strong sales, environmental

awards and tax breaks for its “innovative” products. This success, however, was built

on a very shaky foundation. On Sept. 3rd 2015, Volkswagen officially admitted that

cheating devices had been used on their vehicles since 2009 to manipulate the Nitrogen

Oxides (NOx) emission. The NOx output for the modified vehicles’ could meet standards

in lab tests and standard testing environments but emitted up to 40 times more than

the limits when the vehicles were driven on-road. The shocking news didn’t stop there.

Shortly after the Volkswagen scandal, the U.S. EPA found the same cheating software on

Audi diesel models and a Porsche model1. In EU, an official investigation revealed that

none of the 37 top-selling vehicle models which claimed to satisfy Euro 5 actually met

1http://www.nytimes.com/interactive/2015/business/international/vw-diesel-emissions-scandal-
explained.html
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the standards when driven on-road2. In this paper we refer to the automakers’ failure to

meet standards on-road as misconduct because the firms were aware that there was no

testing regimen in place for on-road performance and sold the cars even though they did

not meet standards when driven on-road. In our classification of misconduct, we do not

distinguish between the case where carmakers made an effort to meet standards but were

unable to do so and the case where they set out to cheat. In our paper, any failure to

meet standards is classified as misconduct.

Responding to the discovery of misconduct in on-road NOx emission, EU decided to

strengthen its monitoring by adopting the Real Driving Emissions test in place of the

decades-old lab test. Simultaneously, EU introduced a conformity factor, which relaxes

the emission standard for the carmakers. From September 2017, vehicle models are allowed

to emit up to twice as much NOx as the current limits for on-road testing. After 2019,

they will still be permitted a 50% overshoot.3

It has been known for a long time that NOx has both direct and indirect harmful

effects on human health. Directly it can cause respiratory disorders, headaches and even

cardiovascular diseases. Indirectly, it affects humans by damaging the ecosystem through

acid rain and smog. It is estimated that in Britain alone, 23,500 people are killed by

NOx emission every year (Colbeck and Lazaridis (2010)). While all fossil-fuel burning

processes result in NOx emission, road transport is the largest contributor to NOx emis-

sion, accounting for 39% of NOx emissions in 2008 and 46% in 2013 in EU.4 With a goal

2https://www.theguardian.com/business/2016/apr/21/all-top-selling-cars-break-emissions-limits-in-
real-world-tests
3https://www.theguardian.com/environment/2016/feb/03/eu-parliament-gives-green-light-for-
loopholes-in-car-emissions-tests
4http://ec.europa.eu/environment/air/transport/road.htm
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Standard Euro 3 Euro 4 Euro 5 Euro 6
Imposed Year 2000 2005 2009 2014

NOx Limits (g/km) 0.50 0.25 0.18 0.08

Table 2.1. EU Emission Standards for Diesel Passenger Vehicles

of reducing NOx emissions, the EU Commission has tightened emission standards four

times from 2000 to 2014 (Table 2.1).

The outcome of the tightening standards, however, was not quite as anticipated with

regards to on-road emissions. While on-road emissions of NOx initially decreased, they

essentially flattened out after 2006 (see Figure 2.1). As standards tightened, the fraction of

automakers failing to meet on-road NOx standards increased. Tightening NOx standards

seem to have been accompanied by greater misconduct on the part of automakers. The

International Council on Clean Transportation (Franco et al. (2014)), one of the first to

discover Volkswagen’s misconduct, tested 15 vehicles from 6 carmakers and discovered

that few vehicle models sold in EU actually met the standard limits for on-road driving

even though all of them passed the lab emission test.

The extent of misconduct observed in our data5 as standards tightened is shown in

Figure 2.1. Figure 2.1 shows the boxplots of on-road NOx emission from 2000 to 2012

recorded in our dataset. The solid line shows the NOx standard limits in place for each

year. Figure 2.1 shows that even though standards were tightened after 2006, the actual

on-road emissions essentially flattened out and the fraction of automakers failing to meet

on-road standards increased.

5Our data comes from Chen and Borken-Kleefeld (2014) who obtained an extensive dataset covering
on-road vehicle emissions in the EU auto market between 2000 and 2012.
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Figure 2.1. Boxplots of on-road NOx emission compared to the EU Stan-
dards Limits (Solid Line)

The increasing misconduct observed in the data indicates the importance of under-

standing factors that influence misconduct. It is the goal of our research to use simple

theoretical models and empirical analysis of on-road emission data in the EU market, to

identify factors that drive misconduct in the auto market. Our goal is to better inform

regulators as they set future emission standards.

In order to understand misconduct, it is important to consider the automakers (and

customers) perspective. Contrary to regulators, carmakers are likely to view a reduction

in NOx emission as hurting their product performance. When questioned about their NOx

emission misconduct, Volkswagen Chairman Hans-Dieter Potesch said that they “couldn’t

find a technical solution within the company’s time frame and budget to build diesel

engines that would meet U.S. emissions standards.” Upon learning the stringent NOx

emission standard released in 2004 for diesel cars in the U.S., Mazda, Honda, Nissan and
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Hyundai decided not to introduce diesel vehicles and said, “the main challenge was that

it was too difficult to meet the new standards while maintaining the engine performance

and staying on budget.”6 From the carmakers’ perspective it is clear that reducing NOx

emission requires either a sacrifice in engine performance or higher investment. This

perspective is validated in the scientific literature which discusses two approaches that

carmakers can use to reduce NOx emissions. One is to install an expensive catalyst

(Gandhi et al. (2003)), which increases the retail price of vehicles. The other is to sacrifice

engine performance by downsizing the engine or reducing fuel efficiency (Yeh (2007)).

Customers tend to care more about good engine performance and low vehicle prices than

the reduction in NOx emission (Deloitte (2014)). Moreover, NOx emission (especially on-

road) is harder for customers to detect compared to the selling price and fuel consumption.

Hence, even for customers who favor low NOx emission, purchase decisions are unlikely

to be based on the vehicles’ on-road NOx emission. This fact coupled with the absence of

on-road testing may increase misconduct as standards tighten if carmakers are willing to

risk high NOx emission in a bid to survive competition in the auto market by attracting

customers who value low price and good engine performance.

Our theoretical and empirical analysis suggests that both market competition and

regulation influence misconduct. Our theoretical models suggest that when competition

strengthens and standards tighten, carmakers are more likely to commit misconduct and

emit in excess of standards. Our empirical analysis using on-road data between 2000 and

2012 confirms this implication and quantifies the impact of both competition and regula-

tion on misconduct. Our results suggest that a 1% increase in market level competition

6http://www.newsweek.com/2015/12/25/why-volkswagen-cheated-404891.html
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increases the probability of misconduct by 0.58%; a 1% tightening of standard limits

increases the probability of misconduct by 1.72%; and each additional model substitute

available in the market increases the probability of misconduct by 0.48%. We also find

a link between the probability of misconduct and vehicle features that are important to

customers. We find that the probability of misconduct is lower by 8.57× 10−6% for a 1%

increase in price (auto makers meet standards with a higher probability for high price

cars); the probability of misconduct is lower by 1.73× 10−3% for a 1% decrease in vehicle

weight (auto makers meet standards with a higher probability for lighter cars); and the

probability of misconduct is lower by 4.26 × 10−2% for a 1% decrease in engine power

(auto makers meet standards with a higher probability for cars with lower power).

Our research also sheds light on EU’s decision to loosen NOx limits in the short

term while introducing sophisticated on-road testing in the longer term. We use both

theoretical comparative statics and empirical counterfactual analysis to study the issue.

Our theoretical model suggests that in the absence of monitoring effectiveness and beyond

a certain threshold of competition intensity, the emission standards should be set looser

as the competition intensity increases. Our empirical counterfactual analysis suggests

that doubling the NOx standard limits (which is what EU did) decreases the probability

of misconduct by 9.56% to 11.04%, depending on the model-level competition in the

market. This finding supports EU’s decision to loosen the NOx limits. Moreover, our

theoretical model suggests that the introduction of more sophisticated monitoring reduces

the influence of competition on misconduct.

Our paper contributes to the literature in the following ways. First, we empiri-

cally identify the role of strict standards (along with competition) in driving misconduct.
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Though previous modeling work (Branco and Villas-Boas (2015), Chen (2001)) has im-

plied the link between strict standards and misconduct, to the best of our knowledge,

there is no prior empirical study that confirms this relationship. Secondly, our research

provides both theoretical and empirical guidance to regulators for setting up NOx emis-

sion standards. We suggest that regulators should decide the strictness of standards

considering the competition intensity and the monitoring effectiveness. Once competition

intensity exceeds a certain level, regulators should consider improving the effectiveness of

the monitoring system each time standards are tightened to prevent misconduct on the

part of automakers.

The remainder of the paper is organized as follows. A review of the related literature

is provided in Section 2.2. In Section 2.3 we discuss a simple theoretical model that

links competition and standards to the probability of misconduct. The results of this

model provide the basic hypotheses for our empirical analysis. In Section 2.4 we describe

the data and define variables used in our analysis. The empirical models are presented

in Section 2.5 and results discussed in Section 2.6. In Section 2.7, we discuss how the

regulators should choose the strictness of standards considering the competition intensity

and their monitoring ability. With counterfactual analysis, we examine how misconduct

is likely to change under the upcoming loosened EU on-road emission standards. In the

end, we summarize the results in Section 2.8.

2.2. Literature Review

Prior research related to misconduct has identified competition as a key factor in-

fluencing the extent of misconduct. For example, several authors (Kulik et al. (2008),
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Pierce and Snyder (2008), Cai and Liu (2009), Bagnoli and Watts (2010), Markarian

et al. (2014), Du and Lai (2015)) have identified that competition drives the failure of

firms to truthfully report their financial accounts. Others have identified the role of com-

petition with regards to fraud in credit ratings and certification (Kinney et al. (2004),

Becker and Milbourn (2011), Jiang et al. (2012), Short et al. (2013), Nistor and Tucker

(2015)). Similarly Mayzlin et al. (2014) have identified the link between competition

and the over-claiming of quality. Competition not only increases misconduct (Schwieren

and Weichselbaumer (2010)) but also promotes the spread of misconduct across firms be-

cause even ethical firms are forced to mimic the questionable practices of their less ethical

counterparts so that they won’t be forced out of business (Reynolds (1940), Staw and

Szwajkowski (1975), Cummins and Nyman (2005), Shleifer (2004), Kilduff et al. (2015)).

In particular, competition drives misconduct when the interest of the market is not well

aligned with the interest of social welfare (Hart (1983)). For example, Snyder (2010) finds

that liver transplant centers with greater competitive pressures overstate the health prob-

lems for their patients to gain priority on the liver waiting list. Bennett et al. (2013) show

that vehicle emission testing facilities facing fiercer competition passed a higher fraction

of unqualified vehicles in order to please customers. Utg̊ard et al. (2015) find that retail

stores facing tougher competition tend to sell more alcohol to underage teens.

While there is no empirical work linking the strictness of standards to misconduct,

there are some theoretical papers that have studied how regulation affects firms’ effort

to improve quality and the total social welfare under competition. Several papers find

that the reward and punishment environment influences individual decisions and the

extent of compliance or misconduct (Becker (1968), Hegarty and Sims (1978), Coleman
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(1987)). Related to our work, the following papers find that stricter regulation does

not necessarily improve social welfare (Melumad and Ziv (2004)) or result in greater

effort to meet standards (Chen (2001), Branco and Villas-Boas (2015)). There are other

papers, however that find situations where firms go beyond what regulations require (and

sometimes benefit as a result). Dowell et al. (2000) find that multi-national firms that

adopt a more stringent global environmental standard (compared to some host country

standards) have higher market values, as measured by Tobin’s q. Kraft et al. (2013) find

that in the presence of competition, the uncertainty of upcoming regulation may lead to

firms implementing ahead of potential regulation.

In the context of automakers and NOx emissions, however, we find that both increased

competition and tighter standards lead to increased misconduct. Our research uses both

theoretical models and empirical analysis to identify the strictness of standards as a key

factor that along with competition affects the level of misconduct in the auto industry.

As suggested in prior research that stricter standards are not always beneficial (Melumad

and Ziv (2004), Chen (2001), Branco and Villas-Boas (2015)), our research quantifies the

impact of stricter standards on misconduct in the automotive market.

2.3. A Simple Theoretical Model for Misconduct

In this section, we describe a simple principal-agent model to motivate how compe-

tition and regulation influence misconduct. The model builds on Branco et.al (2015) to

capture how competing carmakers invest in costly efforts to reduce NOx emission under

different levels of competition and strictness of standards.
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We assume that there are N homogenous carmakers competing in the auto industry.

Each carmaker i chooses to produce quantity qi, resulting in a total supply of Q =
∑

i qi

. The price is determined by the the inverse demand function assumed to be P (Q) with

P ′(Q) < 0 and 2P ′(Q) +QP ′′(Q) < 0.7

We assume that the strictness of standards for NOx emission set by regulators is

denoted by λ ∈ [0, 1]. λ = 0 indicates the absence of any standards whereas λ = 1

indicates the strictest standards.

Each carmaker i selects an effort level γi ∈ [0, 1] when designing and producing its

products. The strictness of standards λ and the effort level γi determine the unit produc-

tion cost c(γi, λ) for carmaker i. We assume that the unit cost of production is increasing

in both the effort and the strictness of standards, i.e., dc
dγi

> 0 and dc
dλ

> 0. We also

assume that the unit cost of production is convex in both the effort and the strictness of

standards, i.e., d2c
dγ2i

> 0, d2c
dλ2

> 0 and d2c
dλdγi

> 0.

We denote the effectiveness of the regulatory monitoring system by m ≥ 0 with higher

values of m indicating more effective monitoring. Lab testing has been the monitoring

system in place for NOx emission over the last 15 years. The extensive amount of miscon-

duct for on-road emissions has indicated the low effectiveness of lab testing. As a result,

the EU Commission decided to improve the effectiveness of monitoring by choosing a

more advanced and sophisticated on-road testing procedure.

If an automaker fails to meet standards, we denote the probability of not being caught

by p(m, γi), a function of both the effort γi and the monitoring effectiveness m. We assume

that increasing the level of effort increases the probability of not being caught, i.e., dp
dγ
> 0.

7The first inequality ensures that price is decreasing in quantity. The second inequality ensures that
profit is concave in quantity.
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We also assume that increasing the monitoring effectiveness decreases the probability of

not being caught, i.e., dp
dm

< 0. We also assume that the marginal effect of each of greater

effort and monitoring effectiveness on the probability of not being caught is decreasing,

i.e. d2p
dm2 > 0 and d2p

dγ2
< 0.

Consistent with Volkswagen’s 18.28 billion settlement for its NOx emission miscon-

duct, carmakers pay a penalty if they are detected violating standards. We assume that

the penalty equals the profit on all vehicles that violated standards. In other words, an

automaker makes a profit on the cars sold only if no misconduct is detected (either be-

cause standards were not violated or the violation was not detected). If misconduct is

detected, the carmaker makes a profit of 0. Under this assumption the profit function of

carmaker i is given by πi(qi, Q, γi) = p(m, γi)qi[P (Q) − c(γi, λ)]. We use this simplified

form of the penalty but the main messages of this model do not change if the penalty is

proportional to the profit or depends on the degree of misconduct.8

Each carmaker must select its effort level γi and its production quantity qi. A higher

effort level decreases the probability of being caught for misconduct but increases the unit

production cost. Carmakers choose their production quantity and effort level to maximize

expected profits given the current strictness of standards and level of competition. The

first order conditions for carmaker i with respect to quantity qi and effort γi imply that

(2.1) P (Q)− c(γi, λ) + qiP
′(Q) = 0

8If the penalty depends on the extent to which a firm violates the market standards, however it is
defined, then one may obtain in some cases that competition does not affect the degree of investment in
satisfying the market standards. However, if there is some uncertainty as to how the monitoring authority
evaluates the extent to which a firm violates the market standards then, again, if there is limited liability
and sufficient uncertainty, the main messages presented above would still be present.
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(2.2)
dp

dγi
[P (Q)− c(γi, λ)]− p(m, γi)

dc

dγi
= 0

Under the assumption that all carmakers are homogenous, each of them will select the

same quantity q and effort level γ. Thus, we can drop the subscript of quantity and effort

for each carmaker. Totally differentiating the equilibrium q and γ, we obtain

dγ

dN
=
qP ′(Q)2 dp

dγ

D
< 0

whereD = [P (Q)−c(γ, λ)]
{
−[(N+1)P ′(Q)+QP ′′(Q)] d

2p
dγ2

}
+[(N+2)P ′(Q)+2QP ′′(Q)] dc

dγ
dp
dγ

+

[(N + 1)P ′(Q) +QP ′′(Q)]p(m, γ) d
2c
dγ2

This result suggests Proposition 2.1 linking effort level to competition intensity.

PROPOSITION 2.1 As the intensity of competition increases (the number of car-

makers increases), each carmaker decreases the optimal effort to meet emission standards.

Consistent with previous research (Bennett et al. (2013), Utg̊ard et al. (2015)), our

model indicates that increasing competition increases misconduct. The rationale behind

this is “a bid to survive”. As fiercer competition leads to lower prices, carmakers lower

their effort in order to reduce their unit production cost even though this increases the

probability of misconduct being detected. Our empirical analysis in Sections 2.5 and 2.6

validates the implication of Proposition 2.1 in the context of NOx emissions.

For our next result, we need a stronger assumption on the inverse demand function.

We assume that P ′(Q) + QP ′′(Q) < 0, i.e., the second derivative of the inverse demand
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function is dominated by the first derivative. This condition is called the strongly domi-

nated first-order effect and is satisfied by most common inverse demand functions.9

Using equation (2.1) and equation (2.2) we obtain

dγ

dλ
= −

[(P ′(Q) +QP ′′(Q)] dc
dλ

dp
dγ

+ [(N + 1)P ′(Q) +QP ′′(Q)]p(m, γ) d2c
dγdλ

D
< 0

if P ′(Q) +QP ′′(Q) ≤ 0.

This result suggests Proposition 2.2 linking effort level to the strictness of standards.

PROPOSITION 2.2 If the inverse demand function satisfies the strongly dominated

first-order effect (P ′(Q) + QP ′′(Q) ≤ 0), the optimal effort exerted by each carmaker

decreases as emission standards become stricter.

The rationale behind Proposition 2.2 is that as standards get tighter, it becomes

more costly for carmakers to comply with the standards. As carmakers now have less to

lose from being caught for misconduct, the penalty for being caught violating standards

becomes less threatening to them. As a result, carmakers exert a lower effort with tighter

standards even though it increases the risk of being caught violating standards.

In summary, the findings from our theoretical model suggest that misconduct is more

likely to occur when competition becomes fiercer and when standards become tighter.

Next, we examine these findings with empirical analysis to see whether they hold with

regards to NOx emissions.

9Common inverse demand functions (Huang et al. (2013)) include linear models: P (Q) = a− bQ where

a, b > 0; logarithmic models: P (Q) = log(Qa )/b where a > 0, b < 0 and exponential models P (Q) =

(a− eQ)/b where a, b > 0.
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2.4. Data and Variable Definition

We construct our dataset by linking four distinct data sources between the years 2000

and 2012: (i) car-by-car on-road emission data from a European country road; (ii) EU

vehicle sales catalog covering all vehicle models offered; (iii) EU Vehicle Registration

dataset; and (iv) EU Vehicle Emission Standards. Below, we discuss some characteristics

of these data sources in more detail, along with definitions of variables in our empirical

analysis.

2.4.1. Dataset

The on-road emission dataset is the core of our study and enables us to analyze actual

NOx emission from cars traveling on European roads. The dataset is collected by sen-

sors installed on European country roads and captures each passing vehicle’s emission

information and features. For each vehicle, the license plate tells the vehicles’ basic infor-

mation about the carmaker, the model, and its first registration date; the speed sensors

record the speed and acceleration at the moment of measurement; and the emission sen-

sors measure the NOx emission on-road. Chen and Borken-Kleefeld (2014) provide more

details about the techniques for measurement and collection of the data. The original

data sample is collected in the first day of June, July and August10 for each year from

2000 to 2014. Altogether we have 288350 records of pass-by vehicles. In our research, we

focus on diesel passenger cars sold in the EU market that are under the enforcement of the

three NOx-related emission standards, Euro 3 to Euro 5 (from 2000 to 2012). Moreover,

10The reason to choose these three months is because the temperature in the summer months is similar
to the lab environment. Vehicles operated in colder temperature emit more NOx. In order to make
the on-road measurement comparable to the lab-testing environment, the sensors only measure vehicles
during summer months.
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we restrict our attention to vehicles that are less than two-year old11 with a driving speed

and acceleration12 when the emission data is recorded that are comparable to lab testing

conditions. The empirical analysis is conducted based on a 13-year on-road NOx emission

dataset of 41883 passenger vehicles from 57 carmakers13. The emission data allows us to

identify whether cars were emitting NOx within standards or not.

To obtain key features of each car we use the publicly available EU vehicle sales catalog.

Based on the information about each vehicle’s carmaker and model in the on-road emission

dataset, we use the sales catalog to obtain each vehicle’s MSRP (manufactures suggested

retail price), horsepower and vehicle gross weight. These vehicle features and price have

a significant influence on customer preferences as well as the main trade-offs made by

carmakers when deciding on the level of effort to put towards reducing NOx emission. We

also use this data to cluster and identify substitute models in the market.

The publicly available EU vehicle registration dataset from 2000 to 2012 records the

vehicle registration number of each car sold during that period. This data is used to obtain

the annual market share of each carmaker and thus implies the market-level competition

intensity.

The EU emission standards from the EU Commission website provide the limits of

NOx emission for each vehicles to be granted market entry. Here we focus on the limits

11Vehicles’ emission performance gets worse as they age. The emission tests are enforced on new cars.
Hence we restrict our attention to new cars to accurately detect misconduct.
12The lab emission test measures vehicles’ emission performance under controlled driving conditions
because speed and acceleration affect emission. Hence, we restrict vehicles on the road to comparable
levels of speed (between 20 km/h and 58 km/h) and acceleration (between 0 m/s2 and 2.8 m/s2).
13Given the variety of ownership changes over the sample, we construct a stable definition of carmakers
based on the logo of vehicles. For example, we keep Audi and Volkswagen separate throughout the sample
even though they both belong to the Volkswagen Group.
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that regulate diesel-fueled passenger cars between 2000 and 2012. Across the 13 years,

the market limits were tightened three times as shown in Table 2.1.

2.4.2. Variable Definition

We define the misconduct, M , for each pass-by vehicle as a dummy variable with M = 1

if the on-road NOx emission exceeds the standards limits and M = 0 otherwise.

We measure the competition intensity at two-levels: the annual market-level compe-

tition intensity, Cmarket which impacts all vehicles sold in that year, and a model-level

competition intensity, Cmodel which measures the product substitutability of each vehicle

model. According to prior research (Raith et al. (2003), Sutton (2007), Vives (2008)),

market-level competition alone may not capture all competition faced by firms. Us-

ing product substitutability can complement the market concentration in measuring the

competition intensity.

We define the market-level competition, Cmarket, for each year using the Herfindahl

Index. Calculated from carmakers’ market share, the Herfindahl index measures market

concentration. A market is highly concentrated if the Herfindahl Index is above 0.25 and

is highly competitive if the index is below 0.01. Define Sj,y to be the market share of

carmaker j in year y and Ny to be the number of carmakers competing in year y. We

construct the variable Cmarket as Cmarket
y =

∑Ny
j=1 S

2
j,y.

We define the model-level competition, Cmodel, faced by each vehicle model as the

number of substitute models available in the market. We determine the substitutes by

clustering analysis on vehicle features (power, and weight) and price. Vehicle models with

similar vehicle features and at comparable price levels offered one-year before or one-year
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after a model are also considered as potential close substitutes. We use clustering analysis

using vehicle features and selling price on the potential substitute data to group them

into several clusters. For each model, its model-level competition is measured as Cmodel,

the number of distinct vehicle models in its cluster.

We define the tightness of the standards, R, for each year by normalizing the limit

value relative to the limit in 2000. For example, the NOx limit in 2000 was 0.50 and the

limit in 2012 was 0.18. This implies that in 2000 the tightness of standards was equal to

1, R2000=1 and in 2012, the tightness of standards was equal to R2012 = 0.18/0.50 = 0.36.

The smaller the number R, the tighter the standards.

We use the variable Makeri to identify the carmaker for vehicle i and variables Xi to

identify vehicle specifications of price, horsepower, gross weight and vehicle age that are

used in the empirical analysis.

We summarize the definition and source of variables used in the empirical analysis in

Table 2.2.

2.5. Hypotheses and Empirical Models

In this section, we empirically examine the insights from the theoretical model in

Section 2.3. Using the dataset described in Section 2.4, we analyze how competition and

strict standards link to misconduct in the auto industry. We propose six econometric

models to properly check the robustness of our empirical analysis.

Our theoretical model in Section 2.3 indicates that both the level of competition

(Proposition 2.1) and the strictness of standards (Proposition 2.2) are linked to the level

of misconduct observed. Our first goal is to confirm this fact empirically. Our second
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Variable Definition Source
Mi Dummy variable. 1 if vehicle i’s on-

road NOx emission surpasses the en-
forced limit. 0 otherwise.

On-road Emission Dataset and EU
Vehicle Emission Standards

Cmarket
year Continuous variable. The smaller the

value, the fiercer the competition in
the market.

Annual Vehicle Registration in EU

Cmodel
i Continuous variable. The larger the

value, the fiercer the model-level com-
petition faced by vehicle i.

EU Vehicle Sales Catalog

Ryear Continuous variable. The larger the
value, the looser the standard in spec-
ified year.

EU Vehicle Emission Standards

Xi Continuous variables. Vehicle i’s fea-
tures including vehicle prices, horse-
power, vehicle weight, and vehicle
age.

EU Vehicle Sales Catalog and On-
road Emission Dataset

Makeri Categorical variable. Vehicle i’s car-
maker.

On-road Emission Dataset

Table 2.2. Lists of the name, definition and sources of the variables

goal is to check whether the strictness of standards directly impacts misconduct or does

so through the level of competition. These two goals lead to our first set of hypotheses

below:

HYPOTHESIS 1 Increasing market-level competition leads to more misconduct.

HYPOTHESIS 2 a. Stricter standards directly lead to more misconduct.

b. Stricter standards indirectly lead to more misconduct via the level of market compe-

tition.

To test whether competition and standards impact misconduct, we start with Probit

models that link the probability of misconduct with the linear form of the strictness of

standards and market-level competition intensity.
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Model 2.0: Pr(Mi = 1) = Φ(β0 + β2Ryear + e)

Model 2.1: Pr(Mi = 1) = Φ(β0 + β1C
market
year + β2Ryear + e)

In Model 2.0 and Model 2.1, Pr(Mi = 1) denotes probability of misconduct, and Φ is

the cumulative distribution Function (CDF) of the standard normal distribution.

Using Model 2.0 and Model 2.1, we can test whether competition and the strictness of

standards jointly affect misconduct. If the coefficients of competition intensity (β1) and

strictness of standards (β2) are both significantly different from zero in Model 2.1, then

both factors influence misconduct. If, however, the coefficient of strictness of standards

(β2) in Model 2.0 (where competition is absent) is significantly different from zero, but

becomes insignificant in Model 2.1 (where market level competition is present), then we

would conclude that standards have an indirect effect on misconduct via market level

competition. Moreover, based on the signs of coefficients β1 and β2 from Model 2.1, we

can obtain the direction of the effect of market level competition and the strictness of

standards on misconduct.

Our next objective is to examine the monotonicity and linearity of the impact of the

strictness of standards and the level of market competition on misconduct. We do so

because some previous research suggests that the effects of competition can be nonlinear

(Bennett et al. (2013), Bresnahan and Reiss (1991)) and some research suggests that

such relationship can also be non-monotone (Olivares and Cachon (2009)). The following

hypotheses assume both effects to be linear:

HYPOTHESIS 3 The effect of increased market competition on misconduct is linear.

HYPOTHESIS 4 The effect of stricter standards on misconduct is linear.
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We use Model 2.2 to test the two hypotheses. Model 2.2 incorporates quadratic terms

for both the level of market competition and the strictness of standards.

Model 2.2 : Pr(Mi = 1) = Φ(β0 + β1,1C
market
year + β1,2C

market
year

2
+ β2,1Ryear + β2,2R

2
year + e)

In Model 2.2, if the coefficients of the second-order terms (β1,2 and β2,2) are significantly

different than zero, we will conclude that the relationships are nonlinear. Moreover, based

on the coefficients in front of the first and second-order terms combined with the value of

competition and strictness of standards (β1,1 + 2β1,2C
market
year ) and (β2,1 + 2β2,2Ryear), we

can examine whether the relationships are monotone.

To examine the robustness of the results from Models 2.0 to 2.2, we examine Hy-

potheses 1-4 again with Models 2.3 to 2.5 that include additional variables in the Probit

regression.

In Model 2.3, we add variables corresponding to vehicle features (price, weight, and

power) that influence customer buying behavior as well as the trade-offs considered by

carmakers when selecting their effort towards NOx emission reduction.We also include the

age of the vehicle because an older vehicle is likely to have higher emissions. In the Probit

regression, the corresponding variables used are Xprice
i (vehicle price), Xhp

i (horsepower),

Xwt
i (vehicle weight), and Xage

i (vehicle age).

Model 2.3 : Pr(Mi = 1) = Φ(β0 + β1,1C
market
year + β1,2C

market
year

2
+ β2,1Ryear + β2,2R

2
year+

β3X
price
i + β4X

hp
i + β5X

wt
i + β6X

age
i + e)

In Model 2.4, we also include carmakers’ fixed effects (Makermi ). Many empirical models

in the literature have included manufacturer fixed effects because different carmakers may
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adopt different business strategies (Olley and Pakes (1992), Berry et al. (1995), Goldberg

(1998), Knittel (2011)) and embrace different attitudes towards misconduct (Bennett

et al. (2013), Utg̊ard et al. (2015)). Hence in Model 2.4 we examine whether standards

and competition still affect misconduct while controlling for the carmakers’ effects.

Model 2.4 : Pr(Mi = 1) = Φ(β0 + β1,1C
market
year + β1,2C

market
year

2
+ β2,1Ryear + β2,2R

2
year+

β3X
price
i + β4X

hp
i + β5X

wt
i + β6X

age
i +∑

m∈Maker

βmMakermi + e)

In Model 2.5, we include model-level competition (Cmodel
i ) as an additional measure of

competition intensity. Cmodel
i is evaluated as the number of substitutes for each carmaker’s

model in year i. In Models 2.1-2.2, we measure competition only at the market level

with the Herfindahl Index to indicate market concentration level. Some prior research

(Sutton (2007), Raith et al. (2003), Vives (2008)) suggests that product substitutability

can also indicate competition intensity and should be examined along with market-level

competition. Hence, we incorporate both first-order and second-order terms for model-

level competition into Model 2.5. With Model 2.5, we examine whether the previous

findings still hold and whether model level competition has any impact on misconduct.

Model 2.5 : Pr(M = 1) = Φ(β0 + β1,1C
market
year + β1,2C

market
year

2
+ β2,1Ryear + β2,2R

2
year+

β3X
price
i + β4X

hp
i + β5X

wt
i + β6X

age
i +∑

m∈Maker

βmMakermi + β7, 1C
model
i + β7, 2C

model
i

2
+ e)

This leads to our final two hypotheses related to the effect of model level competition.
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HYPOTHESIS 5 Increasing model-level competition leads to more misconduct.

HYPOTHESIS 6 The effect of increasing model-level competition on misconduct is

linear.

2.6. Empirical Results

In this section, we analyze the estimation results of the empirical models in Section

2.5 and examine how strictness of standards and competition impacts misconduct. The

estimation results for all models are shown in Table 2.3. Table 2.3 shows the estimated

coefficient for each variable in Models 2.0 to 2.5 along with the level of significance with

which the coefficient is different from 0.

Observe that Hypotheses 1 and 2a are empirically supported by the results of Model

2.0 and Model 2.1. The negative coefficient of R (strictness of standards) in Model 2.0

confirms that tightening standards leads to more misconduct. The negative coefficients

of both R and Cmarket (level of market competition) in Model 2.1 confirm that both

stricter standards and fiercer competition together drive misconduct. In other words, the

empirical evidence suggests that stricter standards independently influence misconduct

and not via the level of market competition.

The results of Models 2.2-2.4 provide a robust confirmation of Hypotheses 1 and 2a.

From Table 2.3 observe that the coefficients of both R and Cmarket remain significantly

negative across Models 2.2-2.4. In other words the effect of strictness of standards and

market competition on misconduct is observed even when we include vehicle characteris-

tics and carmaker fixed effects. The results of Models 2.2-2.4 also support Hypotheses 3

and 4 that the effect of stricter standards and fierce competition on misconduct is linear.
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From Table 2.3 observe that while the coefficients of R and Cmarket are significant in

Models 2.2-2.4, the coefficients of the corresponding quadratic terms are not significantly

different from 0. The results of Models 2.3 and 2.4 also show that vehicle characteris-

tics such as horsepower and weight have a significant influence on misconduct. In other

words, carmakers seem to account for vehicle characteristics that are important to cus-

tomers when selecting their effort level towards NOx emission reduction.

Hypothesis 5 is empirically validated by the results of Model 2.5. The results show

that increasing model level competition increases the level of misconduct though the

relationship is not linear. The estimation results from Model 2.5 indicate that as the

number of substitutes increases, the marginal increase in likelihood of misconduct also

increases. In other words, vehicle models with more substitutes are more sensitive to the

pressure of model-level competition in terms of misconduct.

We summarize our hypothesis testing results in Table 2.4.

All our empirical results confirm the main message of our paper that increasing com-

petition intensity (whether market level or model level) and stricter standards lead to a

higher level of misconduct.

To understand the impact of competition and regulation, we look at the estimation

results from the most complete model, Model 2.5. The marginal effect of variable X on

the probability of misconduct is measured by Φ(Xβ)βx and the results for all variables are

shown in Table 2.5. Our estimation results show that a 1% increase in market level compe-

tition increases the probability of misconduct by 0.58%; a 1% tightening of standard limits

increases the probability of misconduct by 1.72%; and each additional model substitute

available in the market increases the probability of misconduct by 0.48%. Moreover, the
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VariableModel 2.0 Model 2.1 Model 2.2 Model 2.3 Model 2.4 Model 2.5
R -0.27*** -0.31*** -12.61*** -24.25*** -23.96*** -22.95***

(0.05) (0.11) (2.22) (2.67) (2.74) (2.74)
R2 -2.35 1.84 0.016 0.69

(2.75) (2.86) (2.52) (2.94)
Cmarket -14.44*** -9.43*** -8.16*** -8.66*** -7.70***

(3.32) (2.41) (2.46) (2.52) (2.54)

Cmarket2 2.5 1.05 2.20 2.31
(2.63) (2.69) (2.73) (2.72)

Prices −2.82× 10−6 −5.83× 10−7 −1.14× 10−6

(1.52× 10−6) (1.96× 10−6) (1.96× 10−6)
Horsepower 0.01*** 0.01*** 5.67× 10−3***

(6.47× 10−4) (7.26× 10−4) (7.29× 10−4)
Weight 2.53× 10−4** 2.48× 10−4** 2.30× 10−4**

(6.91× 10−5) (8.51× 10−5) (8.51× 10−5)
Vehicle
Age

1.01× 10−3* 1.13× 10−3* 1.15× 10−3*

(5.43× 10−4) (5.52× 10−4) (5.52× 10−4)
Maker’s
Ef-
fect

Yes Yes

Cmodel -1.07
(5.00)

Cmodel2 6.43*
(2.72)

Note: “***” means significance at 0.1 percent level, “**” at 1 percent level, “*” at 5
percent level.

Table 2.3. Model Estimation Results

results in Table 2.5 also show the trade-offs between vehicle features and NOx reduction.

The probability of misconduct will be higher by 8.57×10−6% with a 1% decrease in price,

higher by 1.73× 10−3% with a 1% increase in vehicle weight, and higher by 4.26× 10−2%

with a 1% increase in engine power. As vehicles age, they emit more NOx emission. The

probability of emitting NOx on-road beyond limits increases by 8.65 × 10−5% when the

vehicle becomes 1 year older.
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Hypotheses Testing Results
Hypothesis 1. Increasing market level competition leads
to more misconduct.

True

Hypothesis 2a. Stricter standards directly lead to more
misconduct.

True

Hypothesis 2b. Stricter standards indirectly lead to
more misconduct via increased market competition.

False (2a is correct)

Hypothesis 3. The effect of increased competition on
misconduct is linear.

True

Hypothesis 4. The effect of stricter standards on mis-
conduct is linear.

True

Hypothesis 5. Increasing model-level competition leads
to more misconduct.

True

Hypothesis 6 The effect of increasing model-level com-
petition on misconduct is linear.

False (Monotone but convex)

Table 2.4. Hypotheses Testing Results

Variable Coefficient Estimates Marginal Effect of 1% Increase in Variable
on Probability of Misconduct

R -22.95*** -1.72%
R2 0.69

Cmarket -7.70*** 0.58%
C2
market 2.31

Prices −1.14× 10−6 −8.57× 10−6%
Horsepower 5.67× 10−3*** 4.26× 10−4%

Weight 2.30× 10−4** 1.73× 10−5%
Vehicle Age 1.15× 10−3* 8.65× 10−5%

Maker’s Fixed Effect Yes
Cmodel -1.68
C2
market 6.43* 0.48%

Table 2.5. Marginal Effects of Variables on Probability of Misconduct

2.7. Counterfactual Analysis

The findings in our paper suggest that misconduct is more likely when standards are

tightened or competition intensity increases. In this section, we will first use theoretical

models to evaluate how optimal standards should be set to improve social welfare and
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examine whether the EU decision to relax emission standards is reasonable. Then we will

use counterfactual analysis to examine the extent to which misconduct is likely to change

in response to the new EU NOx emission standards.

This section is motivated by the actions taken by the EU Commission after misconduct

on the part of automakers was detected. The commission took two main actions. Their

first action was to replace the old lab testing (which was unable to monitor on-road

emissions) with the Real Driving Emissions test procedure starting from September 1,

2017. The second action was to relax the NOx emission standards. In the short term

until September 1, 2019, carmakers will be allowed to emit up to twice the current NOx

standards. After that, the on-road vehicles will still be allowed to emit up to 50% more

than the current standards. The changes can be characterized as improving the monitoring

effectiveness but loosening the emission standards.

While the objective of improved monitoring is relatively clear, our goal is to better

understand and motivate the rationale that may have the led the EU Commission to

temporarily relax its NOx emission standards. Both moves would make sense if they lead

to a lower level of misconduct. We provide a simple model and empirical counter factual

analysis that supports the case that improved monitoring effectiveness and somewhat

looser standards are likely to reduce the extent of misconduct related to NOx emission.

2.7.1. Theoretical Models

Continuing with the theoretical models built in Section 2.3, we examine how regulators

can set the strictness of standards to improve social welfare and use the analytical results

to empirically review the two actions taken by the EU Commission.
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Regulators’ objective is to maximize the social welfare composed of two parts: the

total surplus received by customers and carmakers through trading and the social cost to

the environment related to emissions. The cost related to emissions is affected by both the

strictness of the standards and the extent of carmakers’ misconduct . Responding to the

number of competing carmakers in the market N , the strictness of standards λ and the

effectiveness of monitoring m, in equilibrium carmakers choose the production quantity

q and effort level γ (to improve emissions). From Section 2.3, recall the inverse demand

function P (.) and carmakers’ cost function c(γ, λ) related with their effort γ to comply

with the standards λ. The total surplus through market trading is
∫ Q

0
P (x)dx− c(γ, λ)Q

where Q = Nq is the total quantity of production. Regarding the social cost to the

environment, we look at the impact of the total supply, Q units, in two parts: (1 − γ)Q

units emit NOx beyond standard limits due to misconduct whereas γQ units comply with

the standards. We assume the social cost for each unit emitting beyond standards is k

and the social cost for each complying unit is G(λ) (this cost depends on the strictness

of standards). We assume that G(λ) becomes smaller as the standards become stricter.

When standards are the strictest, i.e., λ = 1, the social cost for each complying unit is 0.

When there is no standard, i.e., λ = 0, the social cost for each complying unit is equal to

k. Regulators choose the strictness of standards λ and the effectiveness of monitoring m

to maximize the social welfare. The social welfare function is written as

(2.3)

S(Q(m), γ(m), λ) =

∫ Q(m)

0

P (x)dx−c(γ(m), λ)Q(m)−k(1−γ(m))Q(m)−G(λ)γ(m)Q(m).



www.manaraa.com

93

The social welfare function is concave in the strictness of standards λ. The optimal

strictness of standards λ∗ corresponding to the highest social welfare satisfies dS(Q,γ,λ∗)
dλ

=

0.

Though the following results hold in general functional forms14, here we use a lin-

ear example to illustrate how the optimal standards should be set corresponding to the

competition intensity and monitoring effectiveness. Suppose the inverse demand func-

tion is P (Q) = 1 − Q. In this case, the cost function is c(γ, λ) = c0 + αγ + βλ (where

α, β > 0) and the probability for regulators to detect misconduct is 1− p(m, γ) equal to

1− γm. In equilibrium, carmakers choices for effort and quantity are γ = m 1−co−βλ
α(1+m+N)

and

q = 1−c0−βλ
1+m+N

. After inserting the relevant parts into the social welfare function, we obtain

that the optimal strictness of the standards λ∗ should satisfy

G(λ∗)m
2

α
−G′(λ∗)m1− c0 − βλ∗

αβ
+ k

1 +m+N

1− c0 − βλ∗
−m2k

α
−N − 2 = 0.

Moreover, the optimal standards λ∗ reacts to the competition intensity in the following

way:

dλ

dN
=

[k − (1− c0 − βλ)](1− c0 − βλ)

G′(λ)m 3
α

(1− c0 − βλ)2 −G′′(λ)m (1−c0−βλ)3

αβ
+ k(1 +m+N)β

.

Thus, we have

(2.4)
dλ

dN
< 0

if N >
−3G′(λ)m(1−c0−βλ)2+G′′(λ)m

(1−c0−βλ)
3

β
−k(1+m)αβ

αkβ
= C∗

14The results still hold for convex inverse demand function, convex cost function in effort and the strictness
of standards.
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We summarize the finding in Proposition 2.3 to explain how the optimal standards

should be set according to the competition intensity.

PROPOSITION 2.3 For linear demand and cost functions, there exists a threshold

of competition intensity C∗. When competition is fiercer than the threshold C∗, the opti-

mal standards should be set looser as competition becomes fiercer. When competition is

milder than the threshold C∗, the optimal standards should be set stricter as competition

becomes fiercer.

The analytical results rationalize the action of the EU Commission to stretch the

standard limits. Given the relatively high competition intensity in the EU auto market,

the previous emission standards were set stricter than the optimal level. As standards

were too strict, carmakers exerted less effort in complying with the standards, which led

to more misconduct (Proposition 2.2), thus hurting social welfare. Thus, it is reasonable

for the EU commission to relax standards in the short term.

Next, we look at the EU Commission’s decision to improve monitoring effective-

ness. As the EU Commission replaces the outdated lab testing with the more effective

Real Driving Emissions testing, the effectiveness of monitoring, m, increases. In equa-

tion (2.4), it shows the threshold of competition intensity C∗ increases as monitoring

effectiveness m increases (dC
∗

dm
> 0). That is to say, as monitoring improves, regula-

tors can tighten standards under conditions of higher competition intensity. Suppose

the current market has N0 carmakers, if the monitoring is strengthened to the level m0

where
−3G′(λ)m0(1−c0−βλ)2+G′′(λ)m0

(1−c0−βλ)
3

β
−k(1+m0)αβ

αkβ
> N0, then the regulators can always

tighten the standards to improve social welfare. Moreover, from equation (2.1) and (2.2),

it shows that carmakers exert more effort in complying with the standards under a more
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effective monitoring system ( dγ
dm

> 0). We summarize these two effects of improved mon-

itoring in Proposition 2.4.

PROPOSITION 2.4 If regulators improve the effectiveness of monitoring, carmakers

exert more effort in complying with the emission standards. Under linear demand and

cost functions, the threshold of competition intensity C∗ increases as monitoring improves.

Hence regulators can tighten standards under conditions of higher competition intensity

as monitoring effectiveness improves.

By adopting the new Real Driving Emission tests, the EU Commission incentivizes

carmakers to exert more effort in complying with the standards. Better monitoring will

also allow the EU to continue tightening standards in the future independent of compe-

tition intensity. This explains the feasibility of EU’s plan to initially relax standards and

then quickly tighten them in just two years.

2.7.2. Empirical Analysis

Based on the most sophisticated empirical model, Model 2.5 in Section 2.5, we conduct a

counterfactual analysis to examine how the probability of misconduct will change as EU

relaxes its emission standards to be twice as large as the one of Euro 5. In Figure 2.2,

we visualize the impact calculated from the counterfactual analysis. Overall, loosening

standards has an impact on misconduct reduction. Our counterfactual analysis predicts

that by relaxing the standards limits to twice the existing level, the probability of miscon-

duct will be reduced by 11.04% in a perfectly differentiated market (with the model-level

competition to be the case “no substitutes”) and will be reduced by 9.56% in a perfectly

substituted market (with the model-level competition to be the case “all substitutes”)
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Figure 2.2. Probability of misconduct under various standards tightness
and competition intensity

at the latest market-level competition intensity in our sample15, marked by the vertical

black line. Notice our Model 2.5 doesn’t include the effectiveness of monitoring because

EU has used the same monitoring system to test NOx emission from 2000 to 2016, which

covers the timespan of our sample. Hence, our counterfactual analysis, which excludes the

monitoring variable, calculates the minimum reduction in the probability of misconduct

with the introduction of the new standards. The actual reduction should be larger than

the estimates because carmakers exert more effort in NOx control under a strengthened

monitoring system as shown in Section 2.7.1.

15The latest market-level competition intensity measured in our sample is 0.043. It shows the market is
not yet highly competitive but certainly not concentrated.
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2.8. Conclusion

In this research, we use our theoretical and empirical analysis (using data from 13-year

records of car-by-car on-road emission on European roads) to show that carmakers’ ten-

dency to commit misconduct increases as competition becomes more fierce and standards

become stricter. Our counterfactual analysis points out that the regulators should set the

strictness of standards considering the competition intensity. In general, improved mon-

itoring should always accompany a tightening of standards when competition intensity

exceeds a threshold.

Our research mainly looks at misconduct based on the economic and regulatory en-

vironment. In future studies, it is worth studying how carmakers’ ownership structure

and their interaction impact the misconduct as the studies conducted in other industries

(Bertrand and Lumineau (2015)). Moreover, prior research mentions the design of op-

timal monitoring system (Duflo et al. (2014), Pierce and Snyder (2008)), our research

didn’t study such aspects due to the lack of changes in the monitoring system of EU auto

market from 2000 to 2012. However, after the new EU emission standards have been

enforced for years, research can also empirically study the effect of improved monitoring

on misconduct.
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CHAPTER 3

Forecasting Product Life Cycle Curves:

Practical Approach and Empirical Analysis

(joint with Jason Acimovic, Francisco Erize, Doug Thomas, Jan

A. Van Mieghem)

3.1. Introduction

Many companies seek to innovate and bring new products and services to market,

and growth and product innovation remain top priorities for executives. CEOs have

indicated their commitment to new product development growing over time (PWC 2016)

and at least one survey reports new product development as their top investment priority

(KPMG 2016). One common metric used to evaluate the success of a firm’s innovation

efforts is the percentage of revenue derived from new products. Based on a cross-industry

survey, Cooper and Edgett (2012) report that an average of 27% of a firm’s revenue

comes from new products. (This percentage varied dramatically across respondents; 27%

would be quite high for a food or consumer goods manufacturer and quite low for a

technology firm.) The same survey also reports that the percentage of profit coming from

new products lags the percentage of revenue coming from new products. This suggests

that while new products are essential to growth, they are expensive to support.
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One of the largest challenges in managing new product introductions is creating sales

forecasts. Here it is important to distinguish how firms approach forecasting in general,

and how the approach may differ for new product forecasting. Several studies indicate

that statistical methods play a major role for sales forecasts of mature products. For

example, based on a survey of 144 forecasting practitioners, Fildes and Goodwin (2007)

report that 75% of all forecasts are generated or at least influenced by a statistical forecast.

Contrast this with new product forecasting where market-research based methods and ex-

ecutive opinion dominate (Kahn 2002). While these approaches may be best, or even the

only viable approach, for completely new market entries, most new products are not un-

like anything we have ever seen before. Focusing just on new product forecasting, Kahn

(2002) separates new products according to their “newness,” ranging from incremental

cost or product-attribute improvements to “new-to-the-world” market entries. Perhaps

surprisingly, the survey results in Kahn (2002) indicate that the most popular three tech-

niques used in practice—market research, executive opinion and sales force input—are

the same across the range of product newness. That is, even when a firm has historical

data on a similar product, market research, executive opinion and sales input are still the

most commonly used approaches.

Statistical forecasting for new, but not earth-redefining-new products is the focus of

this paper and where we seek to make a contribution. Our objective is to develop an

approach that can be effectively applied to generate forecasts for new products that are

similar to previous products. Our industrial partner is Dell, and the personal computer

industry, characterized by very high reliance on new product revenue and short product

lifecycles, is our motivating setting. We describe the business environment in greater
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Figure 3.1. A typical PLC curve (left) has four phases. The actual orders of
the majority of short-lifecycle technology products at our partner company
are best described by a triangular PLC curve (right) with two phases.

detail below. The difference in product lifecycles for computers was observed quite early,

with Goldman (1982) pointing out that computer sales were “...characterized by a short

life on the market, a steep decline stage and the lack of a maturity stage.” Figure 3.1

shows a typical product lifecycle curve with introduction, growth, maturity and decline

phases next to actual customer orders for one of the products in our data set. The simple,

triangular PLC curve shown in Figure 3.1 fits historical orders quite well. As we will

see, the pattern in Figure 3.1 is representative as many products in our data set show no

“mature” or “sustain” stage and are well fit by simple, piecewise-linear PLC curves.

While new product forecasting is of critical importance for personal computers, and

this industry is an important one, our approach for product lifecycle forecasting is general

and could be applied in other settings. The central idea behind our approach is to (1)

use the historical product life cycle (PLC) customer order information of previous similar
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products to fit a PLC curve and to (2) use the PLC curve to forecast the entire customer

order evolution of ready-to-launch new products that are similar to past products. We

use and compare several families of functional forms for fitting PLC curves that permit

presence or absence of typical phases in the PLC such as the maturity phase.

Four elements in our approach are important. First, we use normalized product life-

cycle data with clustering to operationalize “similarity” between products. This normal-

ization allows us to look for similar patterns across items that may have different volumes

and lifecycles. Clustering could be provided exogenously (e.g., by the company’s prod-

uct hierarchy) and/or could be automated or refined using a clustering algorithm as we

propose and demonstrate. Second, we focus on static forecasting of the entire PLC just

before the product launch. The key reason for and advantage of forecasting the entire

PLC curve is that operations must plan capacity, sourcing, production, transportation,

and inventory before product launch. Given the leadtimes involved (e.g., transportation

leadtimes from China to North America by ocean is 8 weeks at the computer company

we study), long range (8 week) forecasts are required even before the product is launched.

Utilizing a PLC curve meets that challenge. Third, our approach considers both robust-

ness and effectiveness of several families of PLC curves. Robustness takes into account

both the goodness-of-fit and the complexity of the curves and is measured by the Akaike

information criterion (AIC) and the Bayesian information criterion (BIC). Forecast accu-

racy is our measure of effectiveness. It is well known that forecast accuracy directly drives

safety inventory and capacity requirements, but it also significantly impacts sourcing and

transportation decisions, which leads us to the final element in our approach. Fourth, we

apply our approach on a large set of actual customer order data (133 products) for Dell
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and find that piecewise-linear curves have significantly lower fitting errors than smooth

curves (Bass (Bass 1969) and polynomial) with comparable number of parameters. More-

over, our approach reduces absolute errors by 9% relative to Dell’s forecasts. According to

an internal study conducted at Dell during the time period we study, an improvement in

forecast accuracy of the magnitude we report would result in transportation and inventory

expense savings of $2-$6 per unit on annual volumes in the millions.

3.2. Literature review

Half a century ago, Levitt (1965) wrote that “most alert and thoughtful senior mar-

keting executives are by now familiar with the concept of the product life cycle.” His

critical review of strengths and weaknesses, including the importance of forecasting its

shape to put the concept to work, remains surprisingly relevant. According to Rink and

Swan (1979), the idea of the PLC was introduced in 1950 yet 30 years later there remained

a paucity of empirical evidence. Golder and Tellis (2004) and Stark (2015) provide con-

temporary overviews of the vast field of PLC theory and management. The remainder of

this section focuses on how our work contributes to selective relevant strands of literature

on product life cycle forecasting.

3.2.1. PLC curves: theory

The diffusion model introduced by Bass (1969) remains a cornerstone in PLC theory. Its

ensuing differential equation can be solved explicitly (Lemma 1 in Kumar and Swami-

nathan (2003) and reproduced later); we will refer to its particular bell-shape as the Bass

curve. It should be noted that the classic Bass model has been extended or modified
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in several dimensions. In terms or market and company structure, (Tigert and Farivar

1981) account for whether or not there is a monopoly and whether or not the company

is public. From an operational perspective, for example, Ho et al. (2002) and Kumar and

Swaminathan (2003) include supply availability and constraints. Niu (2006) proposes a

stochastic Bass model and allows its parameters to vary over time periods.

3.2.2. PLC curves: empirical studies

In addition to theory-inspired Bass curves, authors have fitted other curves to empir-

ical data. One popular family of curves are polynomials, which have been validated

with demand data for recreation programs (Crompton 1979), municipal library services

(Crompton and Bonk 1978) and grocery products (Headen 1966). Another popular family

are piecewise-linear curves, as suggested by demand data for ethical drugs (Cox 1967),

food (Buzzell and Nourse 1967) and chemicals (Frederixon 1969). Our empirical analysis

will include Bass curves, as well as polynomial and piecewise-linear curves.

3.2.3. New Product and PLC Forecasting

Goldman (1982) states that many high-tech companies frequently face a situation of a

long lead time and a short PLC. Such a situation is most demanding managerially. It

is noteworthy to point out that classical time series models require the knowledge of

some realized demands or sales to generate their forecasts, which is problematic in this

situation. To help that challenge, our paper analyzes how to forecast entire PLC curves

using historical data of similar previous products. Earlier, Fisher and Raman (1996)

demonstrated the importance of initial forecast (not necessarily of the entire PLC curve)
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quality and of forecast updating and responsive fulfillment. Gallien et al. (2015) analyze

flexibility in replenishment for new product launches where initial forecasts are updated

(for Zara). Another approach to address the challenge is a product portfolio approach

where some product demands may serve as leading indicators for a group of products Wu

et al. (2006).

3.2.4. Integrated PLC Forecasting and Operational Planning and Execution

Hayes and Wheelwright (1979) advocate how to link the manufacturing process and PLC,

and a large literature has coupled forecasting with operational planning and execution.

For example, Fisher and Raman (1996), Kurawarwala and Matsuo (1996), Zhu and Thone-

mann (2004) and Gallien et al. (2015) analyze joint forecasting and inventory decisions.

As do we, Kurawarwala and Matsuo (1996) consider computers and forecast PLC curves,

but they focus on, and in-sample test, only four make-to-order products using only Bass

curves. As we describe further below, our focus is on make-to-stock products at Dell,

where higher forecast accuracy would reduce expedited air transportation in favor of

ocean transportation. For this situation, integrated forecasting and dual sourcing models

are desired; Boute and Van Mieghem (2014) may provide some initial ideas by coupling

of exponential smoothing with dual sourcing. Forecasting over the PLC implies non-

stationary demand, and Graves (1999) addresses (single-sourcing) inventory management

for non-stationary demand. Our paper focuses on PLC forecasting; future work will

integrate with operations planning execution.
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3.3. Context and Business Environment at Dell

Our industrial partner, Dell, is the third largest producer of personal computers glob-

ally. Historically, Dell has fulfilled personal computer demand using a configure-to-order

(CTO) approach. With such an approach, forecasts and inventory decisions must be made

at the component level. Kapuscinski et al. (2004) provide an overview of Dell’s CTO op-

erations and discuss the challenges of forecasting and managing component inventory to

support CTO fulfillment. In recent years, Dell made the strategic decision to shift to

fulfilling significant volume with a make-to-stock (MTS) model. Products selected to

be managed MTS span multiple product categories (e.g., laptop, fixed workstation) and

multiple target markets (e.g., business and consumer). The intent is to select products

to be managed MTS where customers may value a simplified ordering process and fast

delivery over the ability to customize their product. Some MTS products are available

on Dell’s website under a program called Smart Selection with the stated aim to provide

“a simplified ordering process for our best value, prebuilt systems custom-designed based

on customer feedback.”1

Our data set, described in further detail below, is for North America only although

Dell uses this MTS approach globally. For North America, the most cost effective prod-

uct flow for Dell is to have their contract manufacturing partner in China produce and

ship products via ocean—with an 8 week lead time—into fulfillment centers in the United

States. For laptops, air freight from China can be used for faster delivery, but at substan-

tially higher expense. Desktops can be delivered to U.S. fulfillment centers more quickly

by having them produced in Mexico rather than China, but this results in substantially

1http://www.dell.com/learn/us/en/04/campaigns/smart-select-consumer?c=us&l=en&s=dhs ac-
cessed on Sept. 10, 2016.

http://www.dell.com/learn/us/en/04/campaigns/smart-select-consumer?c=us&l=en&s=dhs
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higher manufacturing cost. In both these cases, the additional transportation or man-

ufacturing cost associated with faster delivery may make adopting the MTS approach

financially unattractive; thus, generating accurate forecasts is critical.

The forecasting process for a new MTS product starts with a product team providing

a lifetime quantity forecast and a projected lifecycle length. Using these inputs, a de-

mand planner creates a weekly forecast. The planner may include adjustments for known

seasonal effects, planned promotions or sales initiatives and the potential impact of the

introduction of other new products that may cannibalize demand. Planners may also

examine orders for similar products from the past in creating the weekly forecast. We

expect promotional effects to be somewhat limited in our data set for two reasons. First,

the majority of the products in our data set are aimed at business customers where pro-

motions are limited. Second, for products targeted at consumers, promotions can occur,

but these plans may not be known at the time of product launch in which case they would

not affect the initial forecasts made, and it is these initial forecast we use for comparison.

Since we do not have information regarding promotions and cannibalization, we do not

incorporate these effects into our PLC fitting and forecasting process.

3.4. Data

Our data set, which will be available online, includes weekly North American customer

orders and forecast data for 52 complete product lifecycles from November 2013 until June

2014. For these 52 products, we do not have product category information. Our data set

also includes 81 complete product lifecycles from April 2014 until January 2016. For these

81 products, we do not have forecasts but we do have product category information. We
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note that the older data set is over a smaller period of time (8 months) than the newer

data set (21 months). As such, the products in the older data set for which we have

complete lifecycles will be biased towards short lifecycle products and product launches

between November and January. We first provide a summary of this data, discuss its

limitations, and then describe how we clean and prepare it for analysis. Cleaning and

preparation of the data is necessary so that the PLC curves are normalized: this allows

PLC curves to be compared to each other regardless of total volume or length of the PLC.

3.4.1. Overview

These 133 products belong to one of four product categories—laptops, desktops, mobile

workstations, and fixed workstations—and are all managed with a MTS model. Dell

holds these items in its fulfillment centers to serve individual consumers, institutions, and

retailers. There is one exception: this dataset also includes some bulk custom orders

requested by large organizations. Often, these very large orders are not filled from stock

but rather added to the production schedule at a long lead time to the customer in a

build-to-plan workstream. We try to filter these large orders out (see discussion below

in Section 3.4.3) as our intent is to forecast MTS customer orders satisfied from Dell’s

fulfillment centers. We share summaries of the data’s volume and launch distribution in

Tables 3.1 and 3.2 respectively.

For 81 of the 133 products, we also know the company-defined category. In the fore-

casting process we will ignore any product category information; instead, we will cluster

products by the shapes of their PLCs only as opposed to company defined attributes. We

will, however, report on each cluster’s breakdown of product category types.
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Metric 25th percentile Median 75th percentile

Weekly orders of slowest 20% products 8 29 52
Weekly orders of product with median volume 51 98 148

Weekly orders of fastest 20% products 312 575 883
Number of weeks of PLC 18 30 44

Table 3.1. Summary statistics of the data. (For ‘weekly’ net customer or-
ders, the 25th, 50th, and 75th percentiles are over the observations for that
product across the periods in its own lifecycle.)

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Number launched 27 21 3 5 1 20 0 2 20 8 20 6

Table 3.2. Distribution of number of new products’ launches across different
calendar months.

For 52 of the 133 products we also have Dell’s complete PLC forecasts, updated weekly.

That is, at week 0 (time of launch) we have the point customer order forecasts for week

1, 2, . . . until the last week. Additionally, for any week t we have the forecasts for weeks

t+ 1, t+ 2, . . . until the predicted end of the lifecycle.

Above, we mentioned that we assume that demand planners know the lifetime quan-

tity, the launch date, and the product lifecycle length. Our approach relies on these

assumptions because it essentially provides merely the shape of the PLC with cumulative

orders normalized to 1 and a normalized lifecycle length of 1. Scaling this curve to the

true length of the PLC and to the true volume are tasks we do not attempt to tackle

based on curve shape or category alone: as outlined in Section 3.3, we propose that to

implement our approach, one would work with a demand planning team to estimate these

two values. The launch date and length of PLC are also important because of seasonal-

ity. Once we can identify a normalized PLC shape for a product, we can easily create a
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forecast for actual weekly customer orders by scaling this shape for lifetime volume and

lifetime length and adjusting for seasonality.

How accurate are these two assumptions? We validate the knowledge of total volume

and length of PLC in Figure 3.2. These are derived from the weekly forecasts—all made

in week zero—over the lifetime for the 31 products for which we had forecast data and

which were not removed in the data preparation stage outlined in section 3.4.3. In general,

the company has very good estimates of total lifetime volume (bottom subfigure), either

because it only sells all units produced (which is the forecast) or because it has very good

lifetime forecasts. The company does not do as well predicting lifecycle length based on

the data we have access to; in general it predicts lifecycle length to be longer than the

actual length. While not ideal, there seems to be some consistency in the overestimate

suggesting that there might be room to improve the forecasts. Nevertheless, when we

compare our forecasts to the company’s forecasts in Section 3.7, we use the company’s

imperfect estimates of lifetime quantity and lifecycle length as inputs into our forecasts

in order to enable a fair comparison.

3.4.2. Limitations

The data we have is the same data available to Dell’s demand planners. We note here

some limitations.

(1) Net customer orders only: For each week, we observe only the net customer or-

ders. First of all, this is the sum of total orders placed minus returns and cancel-

lations in that week. We do not know the true total customer orders in a given

week, nor do we know the breakdown (whether it was one big order or lots of
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Figure 3.2. Actual versus company forecasted values of lifecycle length (top)
and total volume (bottom) for 31 products. Company estimates of lifecycle
length are often longer than the true length, while the volume forecasts
appear to be very close to actuals. The vertical axis is disguised. There
are four products for which we had no forecasts, and thus the forecasted
volumes and PLC lengths are zero. There are only 31 products because we
have company forecasts for only 52 products, and of these 52 we eliminate
21 in the data preparation stage described in Section 3.4.3.

small orders). Additionally, if a large order is placed in one week and returned the

next week, it may lead to negative net customer orders observed in the following

week. We discuss how we treat this below in Section 3.4.3.

(2) Censored demand: We observe only customer orders, and we do not have access

to the inventory information. From the customer point of view, if an item is not

in a fulfillment center she will not see the item as explicitly out of stock. Rather
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Prepare data

• Negative order correction

• Small-volume products exclusion

• Seasonality adjustment

• Large outliers adjustment

• Promotion adjustment

• End-of-life truncation

Fit PLC curves to data

• Bass diffusion curves

• Polynomial curves (2nd – 4th degree)

• Piecewise-linear curves

o Triangle

o Trapezoid

Forecast using PLCs

• PLC clustering

• PLC forecasting

o Calculate/choose PLC curve

o Scale time and volume

o Add seasonality

Figure 3.3. Forecasting using PLC curves requires several steps, including
data preparation, curve fitting, and forecasting itself.

the lead time will be longer for items which are not in the fulfillment center.

The customer may or may not decide to continue placing her order. Due to data

limitations, we have no choice but to ignore potential censored demand at this

time.

3.4.3. Preparation

For each product, we have access to only the total net customer orders for each week of

its lifecycle. Thus, before forecasting the customer orders, it is necessary to prepare the

historical raw data to address the phenomena of negative orders, very small volume items,

customer order seasonality, and managed end-of-life behavior. Figure 3.3 summarizes our

overall approach including treatment of the raw data. As noted above, since we do not

have promotional information, we do not include that step in data preparation for this Dell

data set. We retain that step in the figure as it may be an important step in application

of our approach to another data set. We met with a demand planner at the partner

company who informed us as to the root cause of the phenomena and helped guide us as

to the proper treatment of these phenomena.
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Detecting large cancellations. In the raw data, we observe several large negative

net customer orders which occur in the middle of the product life cycle. Let Di
t be the raw

observed net customer order value in week t for product i. Ti is the length of the lifecycle

(in weeks) of product i, and t ∈ {1, . . . , Ti} is the product specific week relative to that

product’s launch week. The total observed customer orders for a product in week t is the

sum of all the actual customer orders minus all the order cancellations and returns for

that week. Returns are relatively rare, and the large negative data points suggest that a

large order which was placed in an earlier week is being cancelled. Based on conversations

with a demand planner at Dell, we define a net customer order value of Di
t at week t to be

a large negative order if 1) the customer order value is negative and the week t is between

the first and last positive order values for product i; and 2) the difference between Di
t and

Di
t−1 is larger than the average differences of neighboring customer order values. Based

on the definition above, we identify 4 negative net customer order values from 4 products

among 133 products as shown in Figure 3.4. We ‘correct’ negative customer order values

by making two adjustments: we reduce the customer order value in the week in which the

large order occurred and we increase the order value in the week in which the negative

order occurred. We achieve this by averaging the two values: D
C[1],i
t = D

C[1],i
t−1 =

Dit+D
i
t−1

2
,

where C[1] denotes cleaning step number 1.

Excluding short lifecycle and low volume products. Some products in our

dataset have fairly short product life cycles on the order of the slower lead time of 8 weeks.

Because we consider a lead time of 8 weeks from China to the United States, we exclude

products whose product life cycle is no more than one and a half times this lead time.

Additionally, we focus on medium- to high-volume products for three reasons: 1) this set of
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Figure 3.4. The 4 products with negative orders we correct. Note that for
products SKU029, SKU206, and SKU413, these negative orders can clearly
(visually) be matched to abnormally high order weeks just before.

products as a whole represents higher-volume products the company presumably chooses

to manage make-to-stock and low-volume products are likely products that in hindsight

should not have been selected for MTS; 2) low-volume products may be better represented

by forecasting approaches developed for discrete distributions when integrality matters;

and 3), the lower-tail of low-volume products does not contribute much to the overall

revenue. Specifically, we remove products that fit one or both of the following criteria:

1) product life cycle is less than 12 weeks long; 2) average weekly volume is fewer than

20 units. Of the 133 products total, we retain 97 products, 31 in the older dataset with

forecasts and 66 in the newer dataset without forecasts but with category information.

Thus, we retain 73% of the products overall, and 95% percent of the total customer order

volume of the original 133 products. Although for this processing step no customer order

values are adjusted within a product, we define the new customer order observations as

D
C[2],i
t = D

C[1],i
t for all i such that i is not excluded by the criteria mentioned.

Adjusting for seasonality and normalization.
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Products in different categories for different markets have different seasonality pat-

terns. For instance, different industrial customers and governmental organizations have

different fiscal years; thus the phenomenon of ‘end-of-fiscal-year-buying’ will occur in dif-

ferent (but perhaps fixed) months throughout the year. Individual customer orders may

be driven by holiday gift-giving or ‘back-to-school’ shopping. Industrial and governmental

organizations may purchase more workstations and fewer entertainment-focused laptops

as compared to individual customers. We do not have access to these effects, and in our

analysis, we do not attempt to adjust for seasonality for two reasons. First, we have no

individual product lifecycle that covers two complete years, so we cannot estimate any

seasonal effects at the product level. Second, since we do not know which products are

aimed at which market, we do not know which subsets of products to group together to

try to estimate seasonal effects.

If one had enough data to group products together by market (namely, by seasonal

buying patterns of primary customers of each product), we suggest one approach here to

adjust for seasonality:

(1) Normalize data so that cumulative volume of each product equals 1. In this way,

the seasonal effect will not be disproportionally affected by high volume products.

(2) For each group, apply an additive or multiplicative seasonal effect model to the

normalized data. This model would estimate customer orders based on the fol-

lowing independent variables:

(a) Month effect (the seasonality to be estimated)

(b) A generalized group-wide PLC that the model would estimate

(c) Fixed effects for year and other group attributes
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As a robustness check, we applied the above multiplicative seasonal effects model.

However, due to the different seasonal patterns of different products, the forecast quality

of the seasonal model we implemented was significantly worse than the same approach

ignoring seasonality.

Hence, the seasonality-adjusted data is thenD
C[4],i
t = f−1

Season

(
D
C[3],i
t

)
, where f−1

Season(·)

denotes the deseasonalization function derived from the seasonal effects model. For the

reasons mentioned above, we set f−1
Season(·) to be the identity function; that is, f−1

Season(x) =

x and fSeason(x) = x.

Excluding build-to-order customer orders. We focus on forecasting PLCs for

MTS products whose orders are filled from on-hand inventory when there is not a stockout.

However, if an individual customer order is large enough, it will be moved from the MTS

workstream to the build-to-order workstream, thereby incurring a longer lead time which

includes production and transportation. Because these orders do not draw on on-hand

inventory, we want to remove them. We do not know exactly which portion of a week’s

customer orders were due to these very large orders. As a proxy, we identify weeks with

very large customer order totals using outlier detection, assuming that this outlier is

actually mostly made up of a very large order with a different workstream. We replace

these outliers with ‘reasonable’ values (defined below) because once the build-to-order

workstream units are removed, there are still likely underlying MTS customer orders. We

identify outliers by the time series outlier detection method described in Chen and Liu

(1993). In essence, the method outlined in that paper fits a time series model to the

data and then identifies outliers significantly deviating from this time series model. Only

nine orders are identified as outliers (Figure 3.5) across all the weeks of data of the 133
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Figure 3.5. The nine products with large values (presumably directed to
another workstream). Large values are denoted by blue squares.

products in the dataset. We replace the detected outliers for product i at week t with

their weighted moving averages, as outlined in Roberts (2000). Recalling that Ti denotes

PLC length of product i, we set:

(3.1) D
C[5],i
t =

D
C[4],i
1 + 2D

C[4],i
2 + · · ·+ (t− 1)D

C[4],i
t−1 + (Ti − t)DC[4],i

t+1 + · · ·+D
C[4],i
Ti

(1 + · · ·+ t− 1) + (1 + · · ·+ (Ti − t))
.

End-of-life truncation. Customer orders near the end of the lifecycle can be strongly

influenced by managerial decisions such as promotions or timing of the introduction of

a new product intended to replace an old one. Since we seek to focus on forecasting

the “naturally occuring” product lifecycle, rather than orders that occur to an actively

managed end-of-life, we exclude customer orders near the end of the lifecycle. In addition

to managerial decisions affecting end-of-life orders, the end-of-life is ‘far away’ at time 0

(launch) and thus there is less value to forecasting it well versus forecasting the nearer term
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Figure 3.6. Illustration of our end-of-life truncation method. Dotted line:
cut-off based on PLC length; Dashed line: cut-off based on volume. Our
method would cut off all data points that occurred after the earliest cut-off
point from either method.

majority of the PLC. In our data set, the length of the product lifecycle can be artificially

extended past when a product’s life has essentially ended, since a single customer order

may occur or a return or cancellation may be made weeks later. Figure 3.6 shows the

third behavior (artificially extended PLC) on the left and the first behavior (managed

end-of-life promotion) on the right.

We exclude the last 1 − θpt of the weeks of the products’ PLCs and we exclude the

last 1− θpv of the total volumes of the products. We initially set 1− θpt = 1− θpt = 0.9.

The processed data is now defined as D
C[6],i
t = D

C[5],i
t for t satisfying the above criteria.

We note that even though we have a short lifecycle cutoff of 12 weeks, by truncating the

end of life of products some resulting lifecycles in our dataset may be less than 12 weeks.

Ti is redefined to be a smaller value as appropriate to account for the cut off data points.
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Figure 3.7. Example of four products’ actual customer orders over time
(top) and normalized orders after data preparation (bottom). Data prepa-
ration can help the data more accurately reflect the reality of the problem
we are trying to solve.

Normalization of data After data preparation, we re-normalize the data so that

for each product, the lifetime cumulative sum of customer orders is equal to 1. We did

this in the seasonality adjustment, but the data needs to be renormalized due to other

processing. Thus, we obtain the customer order series D̃, with D̃i
t = D

C[6],i
t /DC[6],i. The

lack of a t subscript denotes summation: Di ≡
∑Ti

t=1 D
i
t. Thus,

∑
t D̃

i
t = 1 ∀i. All the

following analyses are carried out based on this normalized data series D̃. In this way,

PLCs for products with dramatically different volumes or launch seasons can be compared

with each other. Figure 3.7 shows two examples of pre- and post-cleaned data.

3.5. PLC Curves Fitting

Having cleaned and normalized customer order data, we can proceed with fitting

lifecycle curves to these data for each product. Previous literature has suggested the

following three families of curves: the nth-order polynomial curve (polyn), the BASS

diffusion curves (BASS), and the piecewise-linear ‘curve’ (triangle and trapezoid). We
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Figure 3.8. Six PLC curves fit to one product (JNKH1). A second order
polynomial and the BASS curve overestimate demand in first few weeks.
The fourth order polynomial might be overfitting the last few weeks of the
lifecycle. While the trapezoid curve allows for a sustain phase, it is very
short and visually it is difficult to identify that a clear sustain phase even
exists (from the firm’s point of view). Visually, the third order polynomial
and triangle seem to provide ‘good’ fits in this example.

test and compare models from all three families, comparing both fitting accuracy and

model complexity. Figure 3.8 shows one example product (JNKH1, the same product in

Figure 3.1) fit by each of these curves, with polynomials of order 2, 3, and 4.

3.5.1. Overview of PLC category families

The BASS diffusion model uses three parameters (p, q,m). The parameter m repre-

sents lifetime volume, which we force to be 1. The resulting simplified BASS model for

instantaneous rate of customer order total η(t) is η(t) = p + (q − p)Nt − q(Nt)
2, where
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Nt =
∑t

s=0 η(s) is the cumulative sum of customer orders up to time t, and p and q are

shape parameters (Kumar and Swaminathan 2003). Thus,

(3.2) D̆BASS
t =

p(p+ q)2 exp(−(p+ q)t)

(p+ q exp(−(p+ q)t))2

The ·̆ notation denotes a customer order estimate provided by a particular PLC shape

whose cumulative volume is 1 and whose lifecycle length is Ti.

The family of piecewise-linear curves fit the PLC with connected straight line

segments. We explore two types of ‘curves’ in this family: the triangle (using two con-

nected line segments) and the trapezoid (using three connected line segments with the

middle segment forced to be flat). The triangle is suggested by Goldman (1982) and the

trapezoid allows identification of maturity or “sustain” phase. The below piecewise-linear

functions are valid for any lifetime sum of customer orders. When we force lifetime sum

of customer orders to be 1, in terms of model complexity, the triangle and trapezoid

functions will have 1 less free parameter each.

The triangle PLC requires four parameters (a, b, c, τ), and is defined as such:

(3.3) D̆triangle
t =


at+ b 0 < t < τ

c(t− τ) + (aτ + b) τ ≤ t ≤ Ti

where D̆triangle
t is the order rate at time t, τ marks the period of transition and (a, b, c)

are shape parameters.
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The trapezoid is defined by five parameters (a, b, c, τ1, τ2) which characterize the PLC

as such:

(3.4) D̆trapezoid
t =



at+ b 0 < t < τ1

aτ1 + b τ1 ≤ t < τ2

c(t− τ2) + (aτ1 + b) τ2 ≤ t ≤ Ti

where D̆trapezoid
t is the customer order rate at time t, τ1andτ2 mark the two transition

periods and (a, b, c) are shape parameters: a and c are two slopes and D̆trapezoid
t will equal

aτ + b at transition time τ .

The family of polynomial curves capture the PLC with smooth curvature. Ac-

cording to the literature (Crompton and Bonk 1978, Crompton 1979, Headen 1966), poly-

nomial functions up to fourth orders are sufficient to capture a wide range of PLC curves.

The nth degree polynomial PLC curve is:

(3.5) D̆poly−n
t =

n∑
i=0

ait
i

where D̆poly−n
t is the orders at time t, and ai for i = 0, . . . , n are the shape parameters.

In terms of model complexity, when lifetime volume is forced to equal 1, an nth order

polynomial will have n free parameters.
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Variable poly2 poly3 poly4 BASS triangle trapezoid

RMSE mean 0.0261 0.0238 0.0216 0.0236 0.0219 0.0215
RMSE stdev 0.0230 0.0180 0.0150 0.0171 0.0151 0.0150
RMSE 1st quantile 0.0111 0.0108 0.0100 0.0111 0.0100 0.0100
RMSE median 0.0190 0.0186 0.0169 0.0180 0.0174 0.0172
RMSE 3rd quantile 0.0344 0.0323 0.0302 0.0316 0.0276 0.0270
Loglikelihood 7,457 7,594 7,731 7,548 7,674 7,715
BIC -13,914 -13,856 -13,796 -14,096 -14,014 -13,763
AIC -14,331 -14,412 -14,493 -14,514 -14,571 -14,459
Number of parameters 3 4 5 3 4 5

Table 3.3. Summary statistics of PLCs’ fits to the data. When adjusted for
model complexity, the piecewise-linear curves fit the data the best (see AIC
and BIC values). Values in bold denote they are the best in each row.

3.5.2. Quality of PLC fits

We fit all candidate PLC curves to each product’s processed and normalized customer

order data. The parameters for each curve are found through optimizing the root-mean-

squared error (RMSE) of the candidate PLC applied to the customer order values across

the weeks of the product’s lifecycle. We utilized RMSE to not only fit the PLC curves,

but also to evaluate the quality of the fit. In order to adjust the quality of fit for the

model complexity (that is, the number of parameters) we report two measures intended

to do just that: Akaike information criterion (AIC) and Bayesian information criterion

(BIC). For AIC and BIC smaller values (in general, more negative) imply a better model.

We summarize the performance in Table 3.3 and via boxplots in Figure 3.9.

We observe that smooth curves do not fit better than piecewise curves. In addition to

triangle and trapezoid having the best AIC and BIC scores, of the 97 products, trapezoid is

the best fit for 51, poly4 is the best fit for 38 and BASS is the best fit for 9. One explanation

for a discontinuous derivative providing a better fit is that the business strategies and
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Figure 3.9. Distribution of RMSE of different curves’ fits to the 97 products.
poly4, triangle, and trapezoid appear to fit the data the best. triangle’s
and trapezoid’s worst outliers are better (with respect to RMSE) than other
families’ worst outliers with the exception of poly4. The boxplot is drawn
as such: the box shows the first, second (median), and third quantiles of
the RMSE across the 97 products. The whiskers are 1.5 times the inter
quartile range but will not extend beyond an actual observed value. Dots
are outliers which extend beyond the whiskers.
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marketing plans are changed at specific moments in time over the product life cycle.

While a smoothed curve has to fit the customer order values from launch to near end-

of-life, it lacks the flexibility to allow the curve to capture individual phases (and phase

changes) separately. However, the piecewise-linear curves break the entire lifecycle into

several distinct phases which can mimic the phase changes along the PLC. Regardless

of the quality of fit of piecewise-linear curves, it may be advantageous to use them for

practical reasons. Equally—if not more—important than fit, triangles and trapezoids are

intuitive to explain and estimate. One needs only two slopes (growth and decline rates),

and either one or two transition times.

Within the piecewise-linear curves, the trapezoid curve is slightly better than the

triangle curves in terms of fitting performance but it requires one more parameter. The

key difference between the two types of curves is that the trapezoid allows a flat sustaining

phase in the middle. We now examine whether the sustain phase is significant within the

PLC. In Figure 3.10, we observe that the fraction of the stationary phase relative to PLC

length is small. Most products have some sustain phase but in general, half of products

have sustain phases less than 10% of the entire lifecycle length and three quarters of

products have sustain phases less than 30% of the entire product lifecycle length.

Thus, due to the high quality of fit of the triangle model, the good AIC score, and

the fact that even with a trapezoid most products have very short sustain phases, we will

model product lifecycles with triangles. The following analysis is based on using triangle

curves.
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Figure 3.10. Distribution of relative length of ‘sustain’ phase across 97 prod-
ucts. The relative length of a product’s ‘sustain’ phase is calculated from
its trapezoid PLC. It is the proportion of each product’s PLC that is the
flat middle line segment of the trapezoid. Note that three fourths of prod-
ucts have sustain phases significantly less than a third (on average) of their
entire lifecycle lengths.

3.6. PLC Forecasting

Thus far, we have fitted to each product its own PLC curve. But this is useful only

if we know the exact curve shape for each product prior to launch. As this may be

unrealistic, we propose clustering similar PLCs together into several representative PLC

shapes. Then we can generate PLC forecasts based on the cluster-level PLC curves and

other available supplementary information. That is, if we can identify to which cluster

a product belongs, we can use that cluster’s representative PLC shape as a basis for the

forecast of the product’s customer orders. The true forecast is then based on this PLC

shape, but adjusted for estimates of lifetime quantity, lifecycle length, and seasonality.
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3.6.1. Clustering

Each PLC curve is in essence a time series and thus we can utilize time-series clustering

as outlined in Chouakria and Nagabhushan (2007). This clustering method is based on

proximity of both scale and behavior. The authors present a distance measure to address

the proximity of values in two time series at the same point in time as well as the temporal

correlation for behavior similarity. We outline the exact implementation of their ideas as

well as the selection of number of clusters in the appendix. We note that their distance

measure (δCORT (Xt, Yt)) is model-free: it allows us to cluster the fitted PLC curves based

on their features in terms of temporal structure regardless of whether a polynomial, Bass,

or piecewise-linear curve was used to model the PLC shape. We note that in order to

cluster these PLC curves together, we must normalize the length of the PLCs to be the

same (we choose 100 time periods). Thus a 30 week and 60 week PLC might be clustered

together if they have the same shape, scaled by time.

Once a distance measure is established, we need to determine an appropriate number

of clusters. We first plot ‘sum of squared distances within clusters’ versus number of

clusters in Figure 3.11. Using our judgement, we choose 6 clusters because beyond 6,

there is not much improvement in ‘sum of squared distances.’

We summarize the overall attributes of each of the six clusters. First, we show the

fitted triangle curves broken out by the six clusters in Figure 3.12. Tables 3.4, 3.5, and

3.6 show summary statistics and attributes of each cluster.

Figure 3.12 shows a few distinct patterns (and at least one outlier in the sixth cluster,

and maybe a few anomalies in the fourth and fifth clusters worth further investigation by

the firm). Cluster 1 tends to rise fast for more than half the lifecycle then trend down.
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Figure 3.11. Sum of squared distances within clusters versus number of
clusters. We chose six clusters because there is little reduction in sum of
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Figure 3.12. Each product’s triangle curves broken out by cluster. Cluster-
ing clearly identifies products with similarly shaped curves, even selecting
out an anomalous one by itself in cluster 6.

Cluster 2 tends to rise and fall at different times more gradually. Cluster 3 tends to

be ramping up the entire time. Cluster 6 contains one product whose customer orders

occurred almost all in the single week after Thanksgiving (the first week of its lifecycle).
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Cluster group Mean total volume (scaled) Mean lifecycle length

1 1.00 32
2 0.34 24
3 0.29 25
4 0.13 20
5 0.57 16
6 0.36 7

Table 3.4. Breakdown of clusters by volume and lifecycle length. The mean
scaled total volume for each cluster is proportional to the average volume
per product within that cluster. We scale the raw volume means in order to
disguise the data. Clusters 1 and 5 have the highest volumes while cluster
6 has the shortest lifecycles.

Cluster Product category Fraction of
group Fixed Workstation Laptop Mobile Workstation Desktop Unknown total

1 3 18 1 23 10 0.57
2 5 0 2 5 10 0.23
3 1 4 2 0 6 0.13
4 1 0 0 0 2 0.03
5 0 0 1 0 2 0.03
6 0 0 0 0 1 0.01

Table 3.5. Breakdown of clusters by product category (which were not ac-
tually used in the clustering process). Some category-cluster pairs that
emerge are consumer laptops and desktops in cluster 1, workstation prod-
ucts in cluster 2, and laptops and unknown in cluster 3.

After that, the weekly volumes of customer orders were two orders of magnitude lower for

the rest of the very short lifecycle.

Tables 3.4, 3.5, and 3.6 show that overall, products with differing attributes are spread

across the clusters. This suggests that clustering may be able to identify hidden product

attributes not represented in the raw data itself and possibly not known to demand

planners. Thus, the mere act of clustering (without forecasting anything) may by itself

be beneficial to firms in forecasting new (or almost new) products.
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Cluster group Jan-Mar Apr-Jun Jul-Sep Oct-Dec

1 0.22 0.24 0.24 0.31
2 0.59 0.27 0.05 0.09
3 0.31 0.08 0.23 0.38
4 0.67 0.33 0.00 0.00
5 0.33 0.00 0.00 0.67
6 0.00 0.00 0.00 1.00

Table 3.6. Breakdown of clusters by launch month. Clusters 2 and 4 tend
to have January to March launches while other clusters’ launches are either
spread out across the year or slightly concentrated in October to December.

3.6.2. Generating forecasts from clusters

In order to forecast the weekly orders of new products, we will use the information from

the fitted curves of historical products as well as the company’s knowledge of launch date

as well as its estimates of lifetime volume (D̂i) and lifecycle length (T̂i), as mentioned

in 3.4.1. Here, the ·̂ notation denotes the company’s estimates, not necessarily the true

values. The exact steps we propose to move from PLC curve shape to actual forecast are

as follows:

Step 1: Obtain the fitted PLC curve for the ready-to-launch product.

(a) If the company knows the fitted PLC curve, then the curve is given as

(3.6) D̄i,PLC,knownPLC
t , for t = 1, · · · , T = 100

where here, we utilize the trapezoid curve so that PLC = trapezoid. The

·̄ notation denotes that we are working with time-normalized PLC curve.

That is, D̆i,PLC
t is defined over t = 1, . . . , Ti, whereas D̄i,PLC

t is defined over

t = 1, . . . , 100 for all products. For each, though, cumulative volumes are
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normalized to 1 and other than the time-normalization D̆i,PLC
tact = D̄i,PLC

t100 for

product i for the appropriately paired tact’s and t100’s.

(b) If the company knows that the product belongs to the kth cluster, then the

fitted PLC curve is generated as

D̄i,PLC,knownClust
t =

∑
i∈Jk D̄

i,PLC,knownPLC
t

Nk

, for t = 1, · · · , T = 100

where Nk is the number of fitted curves in cluster k and Jk is the index

of fitted curves in cluster k. Note that we also tested fitting a PLC to the

clustered data which led to very similar results as taking the average of the

PLCs.

(c) If the company knows only a prior probability pik that the product i belongs

to cluster k, then the fitted PLC curve is generated as

D̄i,PLC,unknown
t =

∑
k

∑
i∈Jk D̄

i,PLC,knownPLC
t

Nk

pik, for t = 1, · · · , T = 100.

Unless otherwise stated, we assume that pik = pk ∀i is the empirical proba-

bility/frequency of that cluster occurring.

Step 2: Scale the time and add the seasonality effect fSeason(·) based on the

information of launch week. First, recall the PLC shape has 100 periods in

the time-scaled version regardless of the true lifecycle length (this was necessary

for clustering). We first scale this PLC shape to the actual lifecycle length.

Thus, D̄i,PLC,η
t for t = 1, . . . , 100 is transformed into D̆i,PLC,η

t for t = 1, . . . , T̂i by
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scaling the lifecycle length by the estimated length of the PLC of T̂i for product

i. η ∈ {knownPLC, knownClust, unknown} denotes the ‘level of knowledge’ we

have about a particular product. Then, the fitted PLC curves are updated as:

(3.7) D̆i,PLC,η,Season
t = fSeason

(
D̆i,PLC,η
t

)
, for t = 1, · · · , T̂ .

Recall we do not adjust for seasonality in this analysis. Thus, we define

fSeason(·) as the identity function (that is, fSeason(x) = x).

Step 3: Generate a forecast for product i for every period using the estimate of total

volume D̂i. The forecast is then

(3.8) D̂i
t = D̂i

D̆i,PLC,η,Season
t∑

t D̆
i,PLC,η,Season
t

, for t = 1, · · · , T̂

3.7. Forecast Evaluation

In this section, we compare the quality of the curve-based forecasts against how much

information is known about the PLC curve of each product, and we also compare the

curve-based forecasts with the company’s own forecasts. The comparison metric is mean

absolute scaled error (MASE), a measure of forecast accuracy proposed by Hyndman and

Koehler (2006) and defined as

(3.9) MASE(T ′i ) =
1

T ′i

T ′i∑
t=1

 |D̂i
t −Di

t|
1

T ′i−1

∑T ′i
t′=2 |Di

t′ −Di
t′−1|
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MASE has the desirable properties that it is invariant to scale and it is not skewed

when the data points are near 0. Mean absolute percentage error (MAPE), on the other

hand, divides the period t error by period t demand and thus can be undefined (very

large) when a period’s demand is zero (near zero). Mean absolute error (MAE) is not

scaled for volume or underlying variation, and so comparing MAE across products may

have little meaning. We believe MASE to be a nice compromise between being scaled (to

enable cross-product comparisons) and providing reasonable values even for products with

periods of no demand. We write MASE as a function of T ′ because below we will calculate

the MASE on differing fractions of each product’s actual lifecycle length in weeks. We do

this to understand how forecast quality changes with portion of lifecycle as a firm may

place more importance on forecasting the first half of a product lifecycle than the entire

lifecycle because the first half is more relevant to short term decisions.

First we show the forecasting accuracy within the sample. That is, we assume we know

differing levels of information regarding the PLC curve of a given product, as outlined in

Section 3.6.1: 1) the company knows the exact PLC curve; 2) the company knows the

cluster to which the product belongs and we know the representative PLC curve of that

overall cluster; 3) the company does not know the cluster to which the product belongs,

but we know the prior probabilities of it belonging to each the different clusters.

For each level of knowledge about the PLC curve for a product, for each product, we

measure the MASE(T ′) (Equation (3.9)) for T ′i ∈ {0.5Ti, Ti} where Ti is the actual length

of the product lifecycle in weeks for product i. In Table 3.7 we present the summary values

across the 97 SKUs in our sample.
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We point to two insights derived from Table 3.7. The first insight mostly (but not

entirely) confirms intuition: the PLC-based forecast performs better (MASE is smaller)

when the exact PLC curve is known, but it is not clearly better (and sometimes worse)

to know the cluster itself. We note that these percentiles are across the 97 products and

MASE values are scaled by forecast variability. When we weight forecast errors by volume

in Table 3.8 we see that cluster knowledge is actually very valuable. This suggests that

the representative curve for a cluster is more representative for high volume products

within that cluster, whereas for low volume products the company-wide curve may be a

better choice.

The second insight is that the PLC-based forecast performs better for the 75th per-

centile of the 97 products for the entire PLC as opposed to the first half of the PLC. (Note

there is the reverse behavior for the 25th percentile, but it is of smaller magnitude.) This

suggests that for those products with the worst forecasts halfway through the PLC, the

overall forecast will improve over the rest of the lifecycle under the assumption of known

lifetime demand. Given that we assume we know the lifetime volume exactly for each

product, this is not necessarily surprising. Oftentimes, a mismatch between estimated

and true customer orders will be resolved near the end of the PLC due to this assumption

of known-total-volume.

Secondly, we show the forecasting accuracy of our PLC-based model in a more realistic

environment, comparing it with the company’s own forecasting method. This can be

performed only on 27 of the products for which we have non-zero forecasts (4 of the 31

products in the older dataset do not have forecasts). We aim to perform a fair comparison

where each method has access to the same knowledge. Thus, we follow these steps:
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Progress in PLC Level of knowledge 25th Percentile 50th Percentile 75th Percentile

50% Known PLC 0.67 0.83 1.03
50% Known Cluster 0.75 0.88 1.16
50% Unknown 0.74 0.95 1.20

100% Known PLC 0.70 0.75 0.88
100% Known Cluster 0.76 0.92 1.03
100% Unknown 0.79 0.88 1.11

Table 3.7. Distribution of MASE of the 97 products broken out by progress
in PLC (the fraction of the PLC’s forecast quality being measured starting
from day 1) and level of knowledge of the product’s PLC shape. Knowing
the exact PLC significantly improves the forecast quality.

(1) In week 0 (pre-launch), we have access to the company’s entire lifetime forecast

week by week (but made in week 0). We call these estimates D̂i,comp
t for t ∈

1 . . . T i,comp. (comp is company and T i,comp is the company’s estimate of the

length of the product lifecycle.) Note these may not align with the realized

volumes and lifecycle lengths.

(2) In week 0, we have generated a PLC curve for each product that is normalized

by volume and time. This may be the PLC based on knowing the exact curve

irself, knowing the cluster, or knowing only the cluster probabilities. We scale

this normalized PLC curve by the company’s estimates of lifetime volume and

lifecycle length. Specifically, we scale the lifetime volume to be
∑

t D̂
i,comp
t and we

scale the lifecycle length to be T i,comp weeks. Note that in this way, our method

does not have extra knowledge about the product’s total volume or lifetime length

compared to the company, which is presumably making forecasts based on expert

knowledge about previous products’ customer order totals, observed lifecycles,

etc.
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Progress in PLC Level of knowledge 25th Percentile 50th Percentile 75th Percentile

50% Known PLC 0.68 0.96 1.21
50% Known Cluster 0.73 1.05 1.29
50% Unknown 0.78 1.04 1.45
50% Company 0.82 1.10 1.78

100% Known PLC 0.77 1.03 1.24
100% Known Cluster 0.90 1.06 1.30
100% Unknown 0.85 1.06 1.37
100% Company 0.94 1.12 1.38

Table 3.8. Distribution of MASE for PLC forecasting versus the company’s
own week zero forecasts. MASE values of the 27 products are broken out
by progress in PLC and level of knowledge of the product’s PLC shape.
The PLC forecasting method improves upon the company’s forecasts, even
when nothing is known (‘unknown PLC’) about each product’s actual curve
(‘known PLC’) or even peer products (‘known cluster’). PLC and company
forecasts both use imperfect day zero company forecasts of lifecycle length
and lifetime volume.

(3) We compare the MASE(T ′) for our PLC method (based on differening levels

of knowledge about the PLC) and for the company’s forecast. We do this for

T ′ ∈ {0.5T, T} where T is the true lifecycle length.

We present the results in Table 3.8. We see that the PLC-based forecast methods

perform better than the company’s own forecast, even when we have no PLC-specific

knowledge about the product and use the (essentially) average product-wide PLC curve).

The metric MASE, while useful to compare forecast accuracy across products with

differing volumes and levels of forecastability, does not include volume information. We

also want to know the company-wide impact of a given forecasting method: if a method

works better on a very high volume product we want to reward that method appropriately.

Thus, we measure product-wide sum of absolute errors (SAE). This metric will measure all

errors across all products, and to some extent reflects the weighted average of individual
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Progress of PLC Known PLC Known Cluster Unknown Cluster

50% of PLC 18.7% 12.7% 2.6%
100% of PLC 14.0% 9.2% 3.4%

Table 3.9. Summary of percent reduction in product-wide sum of absolute
error (SAE) using PLC curves compared to using the company’s forecasts.
Percent reduction is measured relative to the company’s SAE in the same
‘progress within PLC’ (50% versus 100%). Even when the cluster is not
known, using the product-wide ‘average’ PLC (“Unknown cluster”) im-
proves the company’s own forecast errors by 2%-3%. Knowing the PLC of
similar products or the PLC itself leads to even more improvement. SAE
is summed across all the non-normalized products: naturally products with
higher volumes and higher forecast errors will contribute more to these val-
ues.

MAEs across products. We present results in Table 3.9 regarding percent reduction in SAE

relative to the company’s value for this metric. When we weight by volume, our method

provides a significant improvement over the company’s forecasts, on the order of 9% for

known cluster. We also note – in contrast to Tables 3.7 and 3.8 – knowing the cluster

significantly improves the product-wide forecast. Thus, we posit that forecasting by known

cluster is more accurate for high volume products, which are exactly the products we want

to forecast the best anyway.

3.8. Conclusion

In this paper, we address the problem of generating forecasts for new products that

are similar to past products. To accomplish this, we fit several functional forms (Bass,

piecewise linear and polynomial) to normalized product life cycle curves of historical data.

Using complete product lifecycle order history for 133 products from Dell, we evaluate

our data preparation and PLC fitting approach.
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We find that simple, piecewise-linear curves are effective in fitting historical PLC

curves. In particular, a simple triangle performed very well on our data. The triangle has

the advantage that it is easy to explain and therefore easy to implement. In addition,

we found that the products in our dataset (which had a median length of 30 weeks) had

almost no “mature” phase of the PLC. While our approach is general and could be applied

to other industries, the finding of a very short mature phase is of course specific to our

dataset. Indeed, an opportunity for future research is to apply a PLC fitting approach

such as ours to datasets from other industries.

We use the normalized PLC curves fit to historical data for forecasting by using time-

series clustering techniques to cluster similar PLC curves and find representative curves

for these clusters. A modification to our approach would be to use information provided

by the company for clusters. This may work particularly well when a new product is the

next version of a very similar past product. Since our approach uses normalized curves,

we must scale the appropriate normalized curve for a new product by a lifetime quantity

forecast. This means the performance of our method is dependent on the quality of these

total lifetime forecasts.

For the subset of products where Dell forecasts are available, we quantify forecast

accuracy improvements obtained by adopting our approach. To do this, we use lifetime

quantity forecasts from Dell to scale our normalized curves, and we assume that we can

use the representative curve from a product’s cluster. (This approach is labeled known

cluster throughout the paper.) We note that we did not have any seasonality, promotional

or cannibalization information that may have been available to Dell. Our known cluster

approach resulted in absolute errors 9% lower than Dell’s historical forecasts. Given the
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volumes involved, such an improvement in forecast accuracy would lead to very substantial

savings.

Effective new product forecasting is critical for many companies, and many new prod-

ucts fall into the category of “similar” to past products; thus, our approach would be

applicable. We hope our work, and the normalized data set that we make available,

stimulates new research in this area.
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APPENDIX A

Time Series Clustering

The proximity of behaviors between two series Xt and Yt is evaluated by means of the

first order temporal correlation coefficient, which is defined by

(A.1) CORT (Xt, Yt) =

∑T
t=1(Xt+1 −Xt)(Yt+1 − Yt)√∑T

t=1(Xt+1 −Xt)2

√∑T
t=1(Yt+1 − Yt)2

CORT (Xt, Yt) falls into [−1, 1] with 1 means that two series behave similarly, i.e. their

increase or decrease at any instant of time are similar in direction and rate, −1 means

that the two series have similar rate of change but oppositie in direction, and 0 means

that the two series are stochastically linearly independent. The proximity on values are

measured as the conventional Euclidean distance with d(Xt, Yt) =
√∑T

t=1(Xt − Yt)2. The

dissimilarity index to measure the proximity between series Xt and Yt is proposed as

(A.2) dCORT (Xt, Yt) = φk[CORT (Xt, Yt)]d(Xt, Yt)

where φm(·) is an adaptive tuning function to adapt the distance metrics d(Xt, Yt) to the

temporal correlation CORT (Xt, Yt). With m to be the tuning parameter, the function

φk(u) is written as

φm(u) =
2

1 + eµ
,m ≥ 0.
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In our case, we use k equal to 2, which is the default choice. When using other values

for m, the results change very little. Note the dissimilarity measure dCORT (Xt, Yt) is

model-free, it allows us to cluster the fitted PLC curves based on their features in terms

of temporal structure and scales.
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